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со значениями почти всех рассмотренных геомеханических свойств пород за исключением 
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Эффективность бурения углеводородных скважин и прокладки туннелей зависит от произ-
водительности бурового оборудования. Значительные затраты на реализацию подобных проек-
тов требуют комплексной оценки параметров, отвечающих за эффективность технологического 
процесса. Повышение качества бурения способно снижать финансовые и временные затраты. 

Породная формация и ее геомеханические свойства влияют на производительность буровой 
коронки [1]. При бурении ее корпус испытывает абразивное воздействие со стороны породы, 
а режущая поверхность — нагрузки сжатия, растяжения и сдвига [2]. В результате коронка из-
нашивается и на ней образуются задиры. Бурение изношенными и поврежденными коронками 
может привести к их полному отказу, требующему принудительное извлечение из скважины. 
При этом существенные затраты на ремонт и замену коронки негативно сказываются на скорости 
бурения [3, 4]. Прогнозирование износа бурового оборудования с учетом свойств горных пород 
необходимо для выбора наиболее подходящего оборудования на стадии проектирования [5]. 
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В Норвежском университете науки и технологий (NTNU / SINTEF) для оценки эффектив-
ности бурения предложены следующие показатели, позволяющие количественно оценить па-
раметры режущих элементов: скорость бурения (DRI); износ коронки (BWI); долговечность 
резца (CLI). Скорость бурения характеризует буримость породы с точки зрения сопротивления 
проникновению [6]. Параметры, влияющие на буримость, делятся на три группы: породные 
(тип породы, минеральный состав, связность частиц, пористость); показатели бурового обору-
дования (тип буровой установки, масса коронки и ее тип, скорость вращения); эксплуатационные 
(метод бурения, система обслуживания узлов и агрегатов, опыт оператора) [7]. 

Повышение скорости бурения и долговечности режущих элементов изучено в [8 – 16]. 
В [14, 16 – 20] для прогнозирования DRI используются следующие зависимости: 

2DRI 0.264UCS 87.049, 0.71R= − + = , 
2DRI 5.28726 86.297, 0.71sI R= − + = , 

2DRI 2.7987BTS 85.674, 0.55R= − + = , 
2DRI 0.9832 118.430, 0.78NR R= − + = , 

0.005USC 2DRI 90.67 , 0.71e R−= = , 
2DRI 3.20 43.200, 0.38Rη= + = , 

2DRI 0.92 89.550, 0.18NR R= − + = , 
2DRI 6.86 83.100, 0.40pV R= − + = , 

2DRI 1.5657 134.970, 0.98NR R= − + = , 
2DRI 0.1514UCS 58.652, 0.91R= − + = , 
2DRI 0.3098UCS 72.515, 0.83R= − + = , 

2DRI 4.1505 71.005, 0.84sI R= − + = , 
2DRI 9.2942 28.302, 0.72Rη= + = , 

2DRI 1.2571 111.250, 0.73NR R= − + = , 
2DRI 2.5623BTS 75.514, 0.76R= − + = , 

2DRI 145.70 1.35UCS, 0.85R= − = , 
2 2DRI 19.40 3.02UCS 0.029UCS , 0.83R= − + − = , 

где UCS — прочность на одноосное сжатие; BTS — бразильская прочность на растяжение;  
sI  — индекс точечной нагрузки; η  — пористость; NR  — величина отскока молотка Шмидта; 
2R  — коэффициент корреляции. 

Износ коронки (BWI) — косвенный показатель изнашивания рабочих поверхностей корон-
ки. Он связан с механическим воздействием коронки на породу и движением относительно по-
роды, является наиболее эффективным, так как определяет время и затраты относительно 
взрываемости в буровзрывных проектах [21, 22]. Прочность породы и наличие в ней абразив-
ных минералов — основные факторы, влияющие на срок службы и производительность корон-
ки [23]. Для большинства пород абразивность прямо пропорциональна износу, а износ обратно 
пропорционален буримости [22, 24]. В [23, 25, 26] износ режущих элементов детально изучен, 
однако не выявлены надежные корреляции для расчета BWI. 
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В данной работе рассмотрены зависимости показателей BWI и DRI от основных парамет-
ров породных формаций. Породы являются вмещающими для углеводородных месторождений 
и основными породами, в которых осуществляется прокладка туннелей. В текущий момент 
на стадии проектирования находится ряд проектов цементной, строительной и угледобываю-
щей промышленности, планируемых к реализации в подобных породных формациях, поэтому 
прогнозирование скорости бурения и износа коронки крайне актуально. 

Цель настоящей работы — разработка моделей прогноза износа коронки на основе 
свойств горной породы. Образцы осадочных пород взяты из провинции Пенджаб (Пакистан). 
Данные экспериментальных исследований использовались для анализа изменения BWI и DRI 
от прочности на одноосное сжатие, модуля Юнга E, коэффициента Пуассона ν , индекса то-
чечной нагрузки sI , отскока молотка Шмидта NR , пористости η  и абразивности A. Также для 
оценки BWI и DRI разработаны модели прогнозирования на основе метода статистической 
регрессии. Эти модели могут использоваться для быстрого расчета показателей буримости 
и износа коронки. 

ЛАБОРАТОРНЫЕ ИССЛЕДОВАНИЯ 

Из породных формаций отобрано 14 образцов (семь образцов песчаника из соляной шахты 
Хевра и семь образцов известняка из формации Саманасух). Также взяты контрольные образцы 
из отдаленных областей. 

Лабораторные исследования включали определение геомеханических параметров породы, 
показателей буримости и износа коронки. Прочность на одноосное сжатие испытывалась 
на цилиндрических образцах объемом ~ 0.03 м3, которые предварительно обрезались, шлифо-
вались в соответствии со стандартами [27]. С целью обеспечения точности для каждой форма-
ции испытано не менее семи образцов. Индекс точечной нагрузки sI  исследовался на керновых 
образцах с отношением длины к диаметру более 1 по стандарту [28]. На рис. 1 показаны образ-
цы песчаника и известняка после разрушения. Модуль Юнга E и коэффициент Пуассона ν  вы-
числялись по методике [27] с помощью датчика осевой и поперечной деформации, NR  — 
по [29] с помощью молотка Шмидта типа L с энергией удара 0.735 Нм, η  — по [30] методом 
насыщения жидкостью. Показатель DRI оценивался на основе экспериментальных значений 
Сиверса (SJ) и хрупкости S20 [31 – 33], BWI получали пересечением определенных значений 
DRI и абразивности A [33]. Далее проводился статистический анализ результатов и предлага-
лись значимые аналитические выражения, согласующиеся с предыдущими исследованиями. 

    а             б 

      
Рис. 1. Образцы песчаника (а) и известняка (б) после испытаний 

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ 

В табл. 1 представлены результаты экспериментальных исследований образцов песчаника 
и известняка. 
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ТАБЛИЦА 1. Физико-механические свойства образцов песчаника и известняка 

Образец UCS,  
МПа 

Is,  
МПа RN E,  

ГПа ν η, 
% 

S20, 
% 

SJ,  
1/10 мм 

A,  
мг DRI BWI 

Песчаник 1 32.07 1.41 22 4.63 0.38 12.19 73.50 16.40 14 78 15 
Песчаник 2 36.08 1.54 25 4.84 0.14 11.48 71.00 15.25 15 75 17 
Песчаник 3 8.53 0.17 12 1.57 0.34 16.08 77.50 28.00 8 83 11 
Песчаник 4 22.86 0.86 16 2.88 0.28 12.67 79.00 13.88 13 80 13 
Песчаник 5 18.77 0.72 15 2.12 0.45 14.04 80.00 14.15 15 81 14 
Песчаник 6 23.12 0.89 18 2.61 0.36 12.85 77.00 13.73 10 79 12 
Песчаник 7 38.73 1.61 28 3.80 0.17 10.88 71.87 14.63 21 73 21 
Известняк 1 32.76 3.09 15 7.97 0.13 2.08 58.95 8.73 5 57 22 
Известняк 2 52.38 3.77 20 16.72 0.23 1.16 50.50 7.40 10 49 33 
Известняк 3 54.68 3.94 24 20.19 0.28 1.14 49.92 5.98 13 48 37 
Известняк 4 62.57 5.49 30 6.74 0.35 0.41 45.87 5.05 17 44 42 
Известняк 5 66.11 4.80 32 13.15 0.19 0.22 45.65 4.98 26 41 49 
Известняк 6 56.98 4.46 26 20.47 0.44 0.47 48.35 5.28 14 46 38 
Известняк 7 44.53 3.60 18 11.75 0.31 1.36 54.92 8.53 9 56 31 
 
На рис. 2 приведены соотношения между показателями DRI, BWI и геомеханическими 

свойствами рассматриваемых пород. 

 
Рис. 2. Изменение скорости бурения DRI ( ) и износа коронки BWI ( ) в зависимости 
от физико-механических свойств пород: а — прочности на одноосное сжатие (USC); б — 
индекса точечной нагрузки sI ; в, г — величины отскока молотка Шмидта NR  для песчани-
ка и известняка; д — модуля Юнга E; е, ж — абразивности A для песчаника и известняка; 
з — коэффициента Пуассона ν ; и — пористости η  
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Установлены линейные корреляции между DRI и BWI и геомеханическими свойствами по-
род (рис. 2). Видно, что DRI с ростом UCS, sI , NR , E, A уменьшается, BWI линейно увеличива-
ется. С другой стороны, при увеличении η  DRI увеличивается, BWI линейно уменьшается. 
Это означает, что рассматриваемые свойства породы влияют на бурение. Изменение DRI отно-
сительно других параметров согласуется с [14, 16, 26, 35, 36]. Изменение BWI относительно 
других параметров согласуется лишь с [35, 36], в которых представлены скорость износа ко-
ронки и срок ее службы. Выявлено слабое соотношение между ν  и DRI и BWI. Коэффициент 
Пуассона не подходит для прогнозирования буримости и износа коронки. Соотношения меж-
ду NR  и DRI и BWI определялись отдельно для песчаника и известняка. На значение отскока 
молотка Шмидта влияет состояние поверхности образца. Кривые DRI и BWI относительно аб-
разивности строились отдельно для песчаника и известняка из-за различий в минеральном со-
ставе, так как наличие кварца влияет на абразивность породы [22]. 

На основе полученных соотношений с помощью простой и множественной линейной  
регрессии разработаны статистические модели: 

2DRI 0.86UCS 97.060, 0.87R= − + = , (1) 

2DRI 9.04 87.040, 0.97sI R= − + = , (2) 

2DRI 2.51 46.240, 0.96Rη= + = , (3) 

2DRI 0.09UCS – 3.99 1.22 69, 0.99sI Rη= − + + = , (4) 

2BWI 0.70UCS 1.800, 0.92R= − = , (5) 

2BWI 6.97 7.290, 0.93sI R= + = , (6) 

2BWI 1.84 38.060, 0.83Rη= − + = , (7) 

2BWI 0.31UCS + 4.89 0.23 0.71, 0.95sI Rη= + − = . (8) 

Коэффициенты R2 моделей (1) – (8) лежат в диапазоне 0.83 – 0.99 при доверительном интер-
вале 95%Δ = . Результаты прогнозирования множественной регрессии в бόльшей степени со-
гласуются с фактическими результатами. Проверка моделей приведена в табл. 2. При 95%Δ =  
рассчитанный F-критерий (Fрасч) превышает табличный (Fтабл). Это означает, что предлагаемые 
модели статистически достоверны [16, 23]. 

ТАБЛИЦА 2. Проверка достоверности моделей (1) – (8) по F-критерию 

Модель Fрасч Fтабл Fзначимое Среднеквадратическая ошибка 
(1) 76.03 4.75 0.00 6.19 
(2) 357.32 4.75 0.00 3.02 
(3) 282.53 4.75 0.00 3.38 
(4) 175.86 3.71 0.00 2.51 
(5) 128.78 4.75 0.00 3.86 
(6) 147.06 4.75 0.00 3.63 
(7) 58.00 4.75 0.00 5.48 
(8) 58.08 3.71 0.00 3.38 
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В табл. 3 выполнена проверка моделей путем экспериментального определения лаборатор-
ных значений (lab) и значений, рассчитанных моделями (расч). 

ТАБЛИЦА 3. Проверка предлагаемых моделей 

Модель Образец DRIlab DRIрасч Модель Образец BWIlab BWIрасч 
(1) Песчаник 78.64 79 (5) Песчаник 13.19 13 

>> 80.44 82  >> 11.72 9 
Известняк 54.72 55  Известняк 32.66 29 

>> 49.83 50  >> 36.64 38 
(2) Песчаник 77.81 79 (6) Песчаник 14.33 13 

>> 82.93 82  >> 10.43 9 
Известняк 49.2 52  Известняк 36.15 29 

>> 47.74 50  >> 37.26 38 
(3) Песчаник 80.98 79 (7) Песчаник 12.59 13 

>> 82.84 82  >> 11.23 9 
Известняк 50.06 55  Известняк 35.26 29 

>> 48.15 50  >> 36.66 38 
(4) Песчаник 79.93 79 (8) Песчаник 14.05 13 

>> 83.25 82  >> 10.83 9 
Известняк 49.9 55  Известняк 35.17 29 

>> 47.83 50  >> 37.52 38 
 
На рис. 3 приведено сравнение рассчитанных и фактических значений DRI и BWI. 

 
Рис. 3. Экспериментальная проверка моделей DRI (а) и BWI (б) 

ВЫВОДЫ 

Получена отрицательная линейная корреляция индекса скорости бурения DRI и положи-
тельная линейная корреляция индекса износа коронки BWI со значениями почти всех рассмот-
ренных геомеханических свойств пород, за исключением пористости, с которой DRI имеет  
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положительную корреляцию, а BWI — отрицательную. Достоверность моделей прогнозирова-
ния индексов DRI и BWI, полученных методом простой и множественной линейной статисти-
ческой регрессии, подтверждена достаточно высоким коэффициентом корреляции R2 > 0.83 
и F-критерием. 

Дальнейшие исследования по данной теме могут включать изучение влияния минералоги-
ческих и структурных характеристик породы на DRI и BWI, таких как полевошпатовый  
индекс, индекс окраски, эквивалентное содержание кварца и твердость по Виккерсу. 

Авторы выражают благодарность доктору Ясиру Мажиду (Инженерно-технологический 
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