ВЛИЯНИЕ ШИРИНЫ ДИФФУЗИОННОЙ ЗОНЫ
В МНОГОСЛОЙНЫХ ОБЛИЦОВКАХ
ПРОФИЛИРОВАННЫХ ЗАРЯДОВ
НА КУМУЛЯТИВНЫЙ ЭФФЕКТ

Ю. М. Дильдин, А. И. Колмаков, С. В. Ладов,
Л. И. Орленко, В. И. Силаева
(Москва)

Подавляющее количество нефтяных и газовых скважин вскрывается при помощи кумулятивных перфораторов, использующих направленное действие врывка кумулятивного заряда [1]. В настоящее время в основном применяются заряды с облицовками из меди, обеспечивающие наибольшую глубину пробиваемого канала. Недостаток подобных зарядов состоит в образовании монолитного песта, способного полностью или частично перекрывать перфорируемые отверстия, что снижает поступление нефти в скважину.

Известны кумулятивные заряды с составными облицовками, образующие разрушающий пест. При этом нужна облицовка, обращенная к взрывчатому веществу, изготавливается из малопроницаемых или легко-плавких металлов, а внутренняя — из меди [1—3]. Толщина отдельных слоев подбирается так, чтобы струя образуется из меди, а легко-плавкий материал переходит в пест и разрушается. Однако глубина пробивания зарядов с составными облицовками не превышает 60% от глубины пробития зарядов с медными облицовками. Причинами столь значительного снижения пробивной способности зарядов могут быть наличие зазоров на границе металлов и изменение плотности в месте контакта отдельных частей составных облицовок. Поэтому задача исследования многослоиных облицовок, полученных не механическим соединением разнородных материалов, а изготовленными методами, обеспечиваемыми их плотное и прочное соединение, приобретает особую актуальность.

В данной работе изложены вопросы, связанные с исследованием медно-алюминиевых и медно-цинковых облицовок. Алюминий и цинк, расположенные во внешней части облицовки, переходят в пест. Ожидалось, что при проникании в пробитое отверстие алюминиевые и цинковые пести будут разрушаться. Исследования проводились на кумулятивных зарядах перфораторов с массой взрывчатого вещества 15 г, имеющего скорость детонации 7800—8000 м/с, плотность 1,65—1,70 г/см³. Для данного типа перфораторов применяются облицовки, изготовленные из меди с углом раствора конуса 60°, толщиной 0,8 мм и диаметром основания 34,3 мм.

Медно-алюминиевые облицовки формировались из горячекатаных биметаллических листов. Соотношение толщин биметаллической облицовки выбиралось таким образом, чтобы вся струя состояла только из меди при обладании равенства масс биметаллической и медной облицовки толщиной 0,8 мм. Однако существование границы раздела разно-плотных материалов может изменить условия обжатия и привести к перераспределению массы металла на струю и пест. Поэтому соотношение толщины варьировалось около ожидаемого оптимального значения (см. таблицу).

Испытания действия кумулятивных зарядов проводились по преграде, имитирующей обсадную колонну скважины и горную породу: стальной пластине (Ст. 3) толщиной 12,5 мм и дорадовской болованке (Д1). Расстояние от торца заряда до преграды составляло 25 мм. Определение средних значений глубины пробития производилось по пяти опытам.

Из полученных экспериментальных данных (см. таблицу) следует, что лучшие результаты по глубине пробития показали заряды с обли-
Экспериментальные данные по глубине пробития (L) дюралюминиевыми облицовками

<table>
<thead>
<tr>
<th>Номер облицовки</th>
<th>Толщина слоя, мм</th>
<th>Режимы термообработки</th>
<th>L_{cp}, мм</th>
<th>$L_{max} - L_{min}$, 100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,8</td>
<td>—</td>
<td>182</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>0,4</td>
<td>1,3</td>
<td>132</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>0,4</td>
<td>1,3</td>
<td>128</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>0,5</td>
<td>0,9</td>
<td>130</td>
<td>11</td>
</tr>
<tr>
<td>5</td>
<td>0,6</td>
<td>0,9</td>
<td>138</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>0,6</td>
<td>0,4</td>
<td>145</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>0,6</td>
<td>0,4</td>
<td>168</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>0,7</td>
<td>0,5</td>
<td>136</td>
<td>12</td>
</tr>
<tr>
<td>9</td>
<td>0,7</td>
<td>0,5</td>
<td>158</td>
<td>8</td>
</tr>
<tr>
<td>10</td>
<td>1,0</td>
<td>0,7</td>
<td>108</td>
<td>15</td>
</tr>
<tr>
<td>11</td>
<td>1,0</td>
<td>0,7</td>
<td>112</td>
<td>14</td>
</tr>
<tr>
<td>12</td>
<td>0,6</td>
<td>0,4</td>
<td>110</td>
<td>12</td>
</tr>
<tr>
<td>13</td>
<td>0,6</td>
<td>0,4</td>
<td>145</td>
<td>10</td>
</tr>
<tr>
<td>14</td>
<td>0,6</td>
<td>0,4</td>
<td>128</td>
<td>11</td>
</tr>
<tr>
<td>15</td>
<td>0,6</td>
<td>0,4</td>
<td>168</td>
<td>10</td>
</tr>
<tr>
<td>16</td>
<td>0,6</td>
<td>0,4</td>
<td>170</td>
<td>9</td>
</tr>
<tr>
<td>17</td>
<td>0,6</td>
<td>0,4</td>
<td>172</td>
<td>9</td>
</tr>
</tbody>
</table>

Новыми в опьте 6. Следовательно, толщина медного слоя у биметаллических облицовок должна быть больше, чем рассчитанная. Однако в этом случае образуется монолитный пест. Испытания облицовок с более толстыми слоями меди и алюминия дали худшие результаты вследствие существенного уменьшения диаметра у основания облицовки [21].

Для изучения влияния ширины переходной (диффузионной) зоны на глубину пробития кумулятивного заряда производился отжиг медно-алюминиевых облицовок при температуре 400°C с выдержками 10, 20, 30, 60, 120 мин. При этой температуре изготавливается медно-алюминиевые листы, и она гарантирует активное протекание диффузионных процессов, а также снятие возможного наклепа, возникающего при совместной прокатке медных и алюминиевых листов. Ширина диффузионной зоны определялась на микроскопе МИМ-8 и уточнялась измерениями микротвердости на приборе ПМТ-3 при нагрузках 20 и 50 г, а также данными микротвермоспектрального анализа на приборе фирмы Са-месса. Исследование микроструктуры роста переходного слоя показало, что после выдержки в течение 60 мин диффузия идет медленно (рис. 1), что хорошо согласуется с известными результатами исследований [4, 5].

Сравнение глубин пробития зарядов с облицовками № 6 и 8 в исходном и отожженных состояниях — № 7 и 9 — показало, что отжиг повысил глубину пробития на 10%, что, по-видимому, связано с получением более выраженной границы изменения плотностей. Отжиг практически не привел к увеличению глубины пробития зарядами с облицовками, имеющими малую толщину меди (№ 2—5), хотя ширина переходной зоны получилась аналогичной предыдущему случаю. Результаты эксперимента можно объяснить глубоким проникновением атомов алюминия в медь и наложением их в структуру, что приводит к снижению ее плотности и способности к растрескиванию. Никакого эффекта термической обработки на глубину пробития зарядами с облицовками № 10 и 11 не наблюдалось вследствие большой толщины медного и алюминиевого слоев.

Из облицовок № 2—5 образуются пестры небольших размеров, состоящие почти целиком из алюминия. При пропитке в пробитое отверстие они разрушаются. У остальных облицовок формировались массивные пестры, перекрывающие перфорационный канал полностью либо частично. Таким образом, исследование медно-алюминиевых облицовок показало, что при их использовании можно получить разрушающий пест, однако глубина пробития в этом случае будет составлять 75% от глу-
Рис. 1. Изменение ширины переходной зоны (6) медно-цинковой облицовки в зависимости от времени выдержки при температуре 400°С.

бним пробития зарядами с медными облицовками. Соответствующее значение глубины пробития можно повысить до 90% за счет увеличения толщины медного и уменьшения толщины алюминиевого слоев. Однако при таком соотношении толщин образуется пест.

Из приведенных данных следует, что плотность материала внешнего слоя должна быть больше, чем у алюминия. Это позволит, во-первых, снизить разность плотностей между слоями и, во-вторых, увеличить внутренний диаметр облицовки при сохранении толщины медного слоя в размере 0,6 мм. Дальнейшие исследования проводились на медно-цинковых облицовках.

Ввиду большого различия в температурах плавления цинка и меди непосредственно прокаткой медно-цинковые листы получить невозможно. Поэтому медно-цинковые облицовки готовились способом, условно названным «горячим» и «жидким» прессованием. При горячем прессовании предварительно изготовленная и очищенная медная облицовка толщиной 0,6 мм впрессовывалась в цинковую и выдерживалась под нагрузкой в течение 3—4 мин при температуре 350—400°С. При жидком прессовании в предварительно подогретую матрицу заливался жидкый цинк, а затем впрессовывалась медная облицовка толщиной 0,6 мм. Цинк твердел за 1—3 мин. Толщина цинкового слоя в обоих случаях регулировалась ходом пuhanона при помощи ограничительных колец. Анализ переходной зоны у облицовок после горячего прессования показал, что она незначительна (рис. 2, а и 3) и имеет равную ширину по всей образующей облицовки. Есть места, где отсутствует сцепление материала.

При жидком прессовании, поскольку коэффициент диффузии жидкого цинка на несколько порядков выше, чем твердого, в структуре переходного слоя образованы все фазы, соответствующие диаграмме состояния Cu — Zn (рис. 2, б и 3). Для определения влияния ширины переходной зоны на эффективность работы кумулятивного заряда пре-

Рис. 2. Распределение меди и цинка в переходной зоне в зависимости от способа получения медно-цинковой облицовки:
а) горячее прессование; б) жидкое прессование.
изводилась термическая обработка облицовок, изготовленных указанными методами. Они отжигались при температурах 360, 370 и 400°С. Время выдержки варьировалось от 3 мин до 6 ч. Изменение ширины переходной зоны в зависимости от метода получения и режима отжига представлено на рис. 3.

Известно, что у большинства металлов механизм диффузии преимущественно является вакансийным [4]. Возможные источники вакансий могут располагаться внутри и на границах зерен, а также на дислокациях. Первоначально поверхность раздела меди и цинка перемещается в сторону компонента, имеющего большую скорость диффузии, т. е. в сторону цинка. В процессе диффузии избыток вакансий может объединяться и образовывать пыль. Этот эффект наблюдается при времени выдержки более 30 мин \(T = 400°С \). При большей продолжительности отжига отмечено уменьшение цинкового слоя, что, вероятно, связано с выходом вакансий на свободную поверхность.

На основании зависимостей ширины переходной зоны от температуры отжига и времени выдержки (см. рис. 3) выбраны облицовки для испытания на глубину проникания. Подправлены заряды с облицовками, полученными различными методами в исходном состоянии и после отжига 370°С в течение 20 мин и 6 ч. Исходное состояние, как уже отмечалось, характеризуется резкой разницей в структуре и однородности переходного слоя облицовок, полученных различными методами. После 20 мин отжига ширина переходного слоя в обоих случаях выравнивается, хотя у облицовок горячего прессования переходная зона не одинакова по образующей (отклонение от среднего значения достигает 30%). Кроме того, при таком режиме отжига атомы цинка еще не попадают в те части облицовок, которые идут в стружку. После отжига в течение 6 ч наблюдается глубокая диффузия цинка в медь. При этом переходные слои у облицовок, изготовленных различными методами, полностью идентичны. Результаты экспериментов представлены в таблице.

Анализ приведенных результатов показывает, что неравномерность переходного слоя у облицовок, полученных горячим прессованием, снижала глубину пробития кумулятивного заряда на 20% по сравнению с методом жидкого прессования (№ 12, 13). В результате выравнивания диффузионной зоны после 20-минутного отжига повысилась глубина пробития зарядов с облицовками, полученными горячим прессованием, примерно на 10% (№ 14, 15). Однородность переходного слоя после 6-часового отжига превышала одинаковой глубине пробития независимо от способа изготовления облицовок (№ 16, 17). Также следует отметить, что глубина пробития зарядов с облицовками, полученными жидким прессованием после 6-часового отжига, не увеличивается по сравнению с облицовками, подвергнутыми 20-минутному отжигу. В испытанных облицовках образуется заметительный медный пест с палестом цинка на внешней поверхности (50—100 мм). При проникании в прокатку пест разрушается.
Проведенные эксперименты указывают на зависимость глубины пробития от ширины и однородности переходной зоны между слоями металлов. Для уменьшения вредного влияния контакта разнотипных материалов необходимо, чтобы переходная зона была как можно шире. В то же время чрезмерное расширение переходной зоны способствует попаданию чужеродных атомов в структуру, что не позволяет достичь глубины пробития зарядов с чисто медной облицовкой.

Поступила в редакцию 12/ХI 1979

ЛИТЕРАТУРА
1. Н. Г. Григорян. Пространственные и заряженные работы в скважинах. М., Недра, 1972.
2. Физика быстротекущих процессов. Т. 2, М., Мир, 1974.
3. Ф. А. Баум, Л. П. Орленко и др. Физика варвра. Под ред. К. П. Степановца. М., Наука, 1975.
4. В. Завьялов. Диффузия в металлах. М., ИЛ, 1958.
5. А. Я. Шишиеев. Диффузионные процессы в сплавах. М., Наука, 1975.

ИССЛЕДОВАНИЕТЕПЛОВОГО ВОЗДЕЙСТВИЯ
УДАРНО-СЖАТОГО ГАЗА
НА ПОВЕРХНОСТЬ СОУДАРЯЮЩИХСЯ ПЛАСТИН

С. Н. Ишуткин, В. И. Кирико, В. А. Симонов
(Новосибирск)

При сварке варовым крупногабаритных металлических пластин на качество сварки оказывает влияние газа, находящийся в зазоре между пластинами [1, 2]. В результате столкновения пластин в зазоре перед двигающейся точкой контакта образуется область ударно-сжатого газа (сужение), размеры которой увеличиваются с ростом расстояния от начала столкновения. Температура газа в этой области может достигать нескольких тысяч градусов, а тепловой поток из газа в металл — 10^{12}–10^{13} эр/(см²·с). Воздействие этого потока приводит к прорезке металла и расплыванию его поверхности до соударения. На достаточно большом расстоянии от места инициирования энергии, поступающей из газа в металл, становится сравнимой с энергией, выделяющейся в зоне пла в результате столкновения. Эти эффекты могут привести к ухудшению качества сварного соединения.

Одной из самых распространенных схем сварки варовым является параллельная схема [3] (рис. 1). Рассмотрим тепловое воздействие пробки ударно-сжатого газа на расстоянии \(L \) от начала соударения. Время воздействия теплового потока

\[t_s = \frac{l}{u} = \frac{L}{u \delta}, \tag{1} \]

где \(u \) — массовая скорость газа за фронтом ударной волны; \(\delta \) — степень сжатия; \(l \) — размер области ударно-сжатого газа.

Тепловый поток из газа на поверхность пластины определяется уравнениями [4]

\[q = St \rho c_p (T^* - T_c), \tag{2} \]

\[T^* = T(1 + (\gamma + 1)/2 \cdot M^2), \tag{3} \]

где \(St \) и \(M \) — число Стенона и Маха; \(T, \ c_p, \ \rho \) — температура, теплоемкость и плотность газа соответственно; \(T^* \) — температура торможения;