2015. Том 56, № 2

Март – апрель

C. 249 – 258

УДК 544.(174.3+18):547.567.4

ЭКСПЕРИМЕНТАЛЬНОЕ И ТЕОРЕТИЧЕСКОЕ ИССЛЕДОВАНИЕ КОЛЕБАТЕЛЬНЫХ СПЕКТРОВ КОМПЛЕКСОВ ОЛОВА(IV) НА ОСНОВЕ 2-ГИДРОКСИ-3,6-ДИ-*ТРЕТ*-БУТИЛ-*ПАРА*-БЕНЗОХИНОНА

Н.М. Хамалетдинова, И.Н. Мещерякова, А.В. Пискунов, О.В. Кузнецова

Институт металлоорганической химии им. Г.А. Разуваева РАН, Нижний Новгород, Россия E-mail: nadia@iomc.ras.ru

Статья поступила 6 марта 2014 г.

Исследованы спектры комбинационного рассеяния 2-гидрокси-3,6-ди-*трет*-бутил-*пара*бензохиноновых комплексов олова L_2SnX_2 и LSnX₃ (L — 2-окси-3,6-ди-*трет*-бутил*пара*-бензохинон; X = CH₃, C₂H₅, *н*-C₄H₉, C₆H₅). Проведен сравнительный анализ экспериментальных и рассчитанных спектров и выполнено условное отнесение частот колебаний. Синтезирован новый комплекс олова(IV) на основе 2,5-дигидрокси-3,6-ди-*трет*бутил-*пара*-бензохинона (L'H₂), содержащий фенильные заместители при атоме металла. Интерпретированы полосы поглощения комплексов в ранее не изучавшейся низкочастотной области инфракрасного спектра.

Ключевые слова: спектроскопия комбинационного рассеяния, инфракрасная спектроскопия, теория функционала плотности, олово, 2-гидрокси-3,6-ди-*трет*-бутил*пара*-бензохинон, 2,5-дигидрокси-3,6-ди-*трет*-бутил-*пара*-бензохинон.

введение

Одной из актуальных задач элементоорганической и координационной химии является детальное исследование физико-химических свойств комплексов непереходных металлов с редокс-активными лигандами. Интерес к изучению этих комплексов связан прежде всего с их реакционной способностью в окислительно-восстановительных превращениях [1—4], которая, в свою очередь, обусловлена электронным строением редокс-активных лигандов. Для установления структурных характеристик и особенностей электронного строения указанных комплексов широко используются различные спектроскопические методы (электронная, рентгеноэлектронная, ИК, ЭПР спектроскопия), однако практически не применяется спектроскопия комбинационного рассеяния (КР), несмотря на ряд очевидных достоинств этого метода. По степени информативности спектроскопия КР не уступает инфракрасной, а в ряде случаев имеет преимущества, позволяя изучать колебательные состояния, связанные с частотами в дальней инфракрасной области (600—30 см⁻¹). С помощью спектра КР можно подтверждать наличие неполярной группы в структуре, а на основе интенсивности полос поглощения в ИК и КР спектрах сделать заключение о симметрии молекулы [5, 6]. Таким образом, ИК и КР спектроскопии позволяют получить важные сведения о структурных особенностях комплексов.

В данной работе предпринято экспериментальное и теоретическое изучение спектров комбинационного рассеяния комплексов олова(IV) на основе *пара*-бензохинонового лиганда, функционализированного одной или двумя гидроксидными группами (2-гидрокси-3,6-ди-*трет*бутил-*пара*-бензохинон и 2,5-дигидрокси-3,6-ди-*трет*-бутил-*пара*-бензохинон) и сопоставление КР и ИК спектров указанных комплексов с целью выявления дополнительных структурных сведений.

[©] Хамалетдинова Н.М., Мещерякова И.Н., Пискунов А.В., Кузнецова О.В., 2015

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Комплексы олова(IV) на основе 2-гидрокси-3,6-ди-*трет*-бутил-*пара*-бензохинона (LH) синтезированы по известным методикам [7, 8]. Индивидуальность комплексов подтверждали методом ЯМР ¹H и ¹³C (спектрометр Bruker Avance III (400 МГц), растворители CDCl₃ и (CD₃)₂SO, 20 °C, внутренний эталон — тетраметилсилан).

Синтез 2,5-дигидрокси-3,6-ди-*трет*-бутил-*пара*-бензохинона (L'H₂). 7,10-Ди-*трет*бутил-2,5-диоксабицикло[4.4.0]дека-1,6-диен-8,9-дион (3 г, 0,0108 моля) растворяли в ледяной уксусной кислоте (50 мл). К полученному раствору добавляли концентрированный водный раствор HBr (20 мл). Реакционную смесь нагревали при 60 °С при перемешивании в течение 1 ч. При этом цвет раствора менялся от красного до оранжево-желтого. Образующийся дигидрокси*пара*-бензохинон выделяли из реакционной смеси в виде оранжевого мелкокристаллического вещества. Продукт отделяли от маточного раствора фильтрованием, затем промывали на фильтре водой и сушили на воздухе. Аналитически чистый продукт получали перекристаллизацией из гексана. Выход составил 2,2 г (81,5 %). Найдено (%): С 66,69, Н 8,01. Вычислено для $C_{14}H_{20}O_4$ (%): С 66,65, Н 7,99.

¹Н ЯМР (400 МГц, CDCl₃, 20 °C, δ, м.д.): 1,37 (с, 18H, CH₃(Bu^t)), 8,68 (с, 2H, OH).

¹³С ЯМР (100 МГц, CDCl₃, 20 °C, δ, м.д.): 30,05 (CH₃(Bu^t)), 34,81 (C(Bu^t)), 119,73 (С_{хинон}— Bu^t), 168,40 (уширенный, С_{хинон}—OH и С_{хинон}=O).

Синтез комплекса ((C_6H_5)₃Sn)₂L'. К раствору 2,5-дигидрокси-3,6-ди-*трет*-бутил-*пара*бензохинона (0,3 г, 1,19 ммоля) в метаноле (20 мл) при перемешивании добавляли трифенилоловогидроксид (0,8735 г, 2,38 ммоля). Реакционную смесь перемешивали в течение 10 мин, при этом цвет раствора менялся от оранжево-желтого до фиолетового. Образующийся комплекс олова выделяли из реакционной смеси в виде мелкокристаллического вещества. Продукт отделяли от маточного раствора фильтрованием и сушили на воздухе. Выход аналитически чистого продукта составил 1,05 г (93 %). Найдено (%): С 63,23, Н 5,11, Sn 24,94. Вычислено для $C_{50}H_{48}O_4Sn_2$ (%): С 63,19, Н 5,09, Sn 24,98.

¹Н ЯМР (400 МГц, (CD₃)₂SO, 20 °C, δ, м.д.): 1,35 (с, 18H, CH₃(Bu^t)), 7,38 (мультиплет, 18H, CH(Ph)), 7,71 (мультиплет, 12H, CH(Ph)).

¹³С ЯМР (100 МГц, (CD₃)₂SO, 20 °С, δ, м.д.): 30,38 (CH₃(Bu')), 34,39 (C(Bu')), 119,15 (С_{хинон}—Bu'), 128,45, 129,42, 136,90 (С_{Ph}—H), 142,66 (С_{Ph}—Sn), 172,52 (С_{хинон}—O и С_{хинон}=O).

¹¹⁹Sn ЯМР (149 МГц, (CD₃)₂SO, 20°С, δ, м.д.): -155,86.

КР спектры хиноновых комплексов регистрировали на КР приставке RAM II к ИК Фурьеспектрометру Vertex 70 (Bruker). Длина волны лазера (Nd:YAG) 1064 нм. Детектор индий галлий—арсенид InGaAs. Мощность лазера до 500 мВ.

Регистрацию ИК спектров поглощения проводили на ИК Фурье-спектрометре Vertex 70 (Bruker) в спектральном диапазоне от 150 до 4000 см⁻¹ с разрешением 4 см⁻¹; число сканов 32. Для записи спектров в среднем ИК диапазоне (400—4000 см⁻¹) образцы готовили в виде суспензии в вазелиновом масле, а в ряде случаев в виде растворов в растворителях разной полярности (циклогексан, ундекан, тетрагидрофуран, хлороформ, диоксан, диглим) с концентрацией 0,01—0,02 моль/л. Разделение налагающихся полос на лоренцевы и гауссовы составляющие проводили с помощью программы OPUS 6.5. Для растворов были проведены температурные измерения в температурной ячейке Specac.

Отнесение полос в спектрах проводили на основании теоретического анализа и литературных данных. Для уточнения отнесения полос в КР и ИК спектрах комплексов проведены квантово-химические расчеты с использованием программы GAUSSIAN 03. Оптимизацию геометрии комплексов и расчет колебательных спектров проводили в рамках метода теории функционала плотности на уровне B3LYP/DGDZVP. Для всех структур матрица Гессиана определена положительно.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Исследованные комплексы (1)—(4) содержат два моногидрокси-*пара*-бензохиноновых лиганда и различные углеводородные заместители, связанные с атомом олова [7]. Комплексы (5) и (6) являются цепными координационными полимерами с мостиковыми окси-*пара*-хиноновыми лигандами [7, 8].

Синтезированный комплекс (7) представляет собой биядерное соединение, в котором каждый атом олова связан ковалентно с одним из атомов кислорода лиганда, а атомы кислорода карбонильных групп координированы на атом металла. Таким образом, в данном комплексе нет свободных концевых карбонильных фрагментов в отличие от комплексов (1)—(6). Новый комплекс олова(IV) на основе 2,5-дигидрокси-3,6-ди-*трет*-бутил-*пара*-бензохинона (L'H₂) получен в результате взаимодействия дигидрокси-*пара*-бензохинона с трифенилоловогидроксидом в мольном соотношении 1:2 (схема 2) и охарактеризован методами ИК и ЯМР спектроскопии на магнитных ядрах ¹H, ¹³C и ¹¹⁹Sn.

Полные экспериментальные и теоретические колебательные спектры комплексов (1)—(7) представлены в табл. 1 и 2. Рассчитанные колебательные спектры удовлетворительно согласуются с полученными экспериментально (рис. 1).

Рис. 1. Экспериментальные и теоретические спектры КР (а) и ИК (б) комплекса L₂Sn(CH₃)₂

Таблица 1

	$L_2Sn(CH_3)_2$ (1)		$L_2Sn(C_2H_5)_2$ (2)			$L_2Sn(C_4H_9)_2$ (3)			$L_2Sn(C_6H_5)_2$ (4)			
Отнесение	ИК	КР	DFT	ИК	КР	DFT	ИК	КР	DFT	ИК	КР	DFT
S(CSpC)	141cm	133cm	142									
o(CSnC)	14100	152cp	142									
8(C C -)	198сл	1 <i>52</i> ep	200	176сл		198	194сл		191			
$\delta(CC)$	222сл		200	197сл		201	174051		171			
$\delta(CC)_{XUH. K}$	310		120	208сл		308	204сл		310			
$\delta(CC)_{tBu}$	418сл		727	270сл 419сл		430	2940л 416сл		430			
$\delta(CC, CH)$	410051			чтусл		450	410051		450			
$\delta(C, SnC)$										22000	107сл	103
$O(C_{ap}SIIC_{ap})$										2290л	197сл 242сл	221
v(SnC)										243сл 273сл	298сл	275
$\delta(CC)$										<u>442сл</u>	470cn	456
О(СС)ар, непл										450сл	rioep	461
δ(OSnO)	484сл	462cp	494	484сл	466cp	483	483сл	464cp	480	480сл	467cp	487
v(CC)		· · · r						· · · r				
$\delta(OSnO)$	542сл	548cp	552	540сл	548сл	547	542сл	542cp	551	550сл	552сл	551
$v_{c}(SnC)$	521сл	522cp	509	496оч.сл	496cp	488	515сл	515сл	497			
$v_{s}(SnC)$	573сл	1	535	522оч.сл	1							
δ(CC) your y	600сл		605	600сл		603	608сл		603	604cp		600
$\delta(CO)$	615сл								608	1		611
v(SnO)												
$\delta(CC)_{an}$										998сл	1002сл	1011
e (e e) ap										1023cp		1039
										1075c		1091
δ(CH)	1008сл		1118	1008сл		1009	1011сл		1021	1009сл		1020
ν(CC) _{хин. к}	1066cp		1087	1067cp		1087	1070cp		1089	1066cp		1087
δ(СН) _{хин. к, плоск}	1173cp		1202	1170c		1202	1170c		1201	1176cp		1178
δ(CO)												1209
v(CH) _{SnAlk}												
$\delta(CC)_{tBu, cкел}$	1215cp	1205сл	1231	1212cp	1203сл	1228	1213сл	1203сл	1230	1216сл		1229
	1255сл			1255cp			1251сл		1252	1250сл		1242
δ(CH) _{хин. к}	1354cp	1352сл	1341	1354cp	1315сл	1340	1355cp	1351сл	1343	1356сл	1355сл	1371
$\nu(CC)_{XUH. K}$	1360cp	1320сл	1371	1367cp	1358сл	1370	1363сл		1371	1364сл		1376
	1367cp			1393cp			1392cp			1392сл		
v(COSn)	1315cp	1320сл	1326	1311сл	1315сл	1328	1316сл	1322сл	1324	1314cp	1322сл	1330
$\nu(CC)_{ap}$										1430cp	1579оч.сл	1619
δ(CH)										1480cp	15/0сл	1621
										15/0CJI	1393cp	1031
v(C-C)	15540	15500	1504	15480	15510	1505	15450	15560	1505	15920	15560	1570
v(C=C)	16230	16120	1635	16100	16120	1635	16160	1611c	1640	16190	16110	1605
v(С-О)коорд	10230	10120	1646	10190	10120	1647	10100	10110	1662	10190	1622cm	1657
v(C=O)		1641c	1672		1641c	1672		1641c	1672		1638c	1679
	I I			I			I		10,2	I	10000	

Частоты колебаний в спектрах комплексов (1)—(4), v (см⁻¹)

Примечание. Сокращения: асим — асимметричные, сим — симметричные колебания, с — сильные, ср — средние, сл — слабые полосы, неплоск — неплоскостные, плоск — плоскостные, веер — веерные, ножн — ножничные, крут — крутильные, скел — скелетные колебания, коорд — координированная, некоорд — некоординированная группа С=О, хин. к — хиноновые кольца.

Таблица 2

0	LS	n(CH ₃) ₃ (5))	LS	n(C ₆ H ₅) ₃ (6	$((C_6H_5)_3Sn)_2L'$ (7)			
Отнесение	ИК КР		DFT	ИК	КР	DFT ИК		КР	
1	2	3	4	5	6	7	8	9	
δ(CSnC)	150cp	137сл	148						
			156						
$\delta(CC)_{XUH. \ \kappa, \ Heплосk}$				136сл		150	143c		
$\delta(C_{XUH. \kappa}C_{tBu})$		167сл	197	190сл			173c	167сл	
$\delta(CC)_{XUH. \kappa}$									
$\delta(C_{ap}SnC_{ap})$				214	209cp	202	230c	207сл	
				221сл	233сл	217	263c	222сл	
				235		231	276c		
				261сл		266			
$\nu(SnC_{ap})$				282сл		278	276c		
	200		224	410		296	212	226	
$\delta(CC)_{tBu}$	300сл		324	418сл		424	312c	326сл	
δ(CC) _{хин. к}	41/сл		425	256		244	320c		
$\delta(CC)_{tBu}$				356сл	470	366			
$\delta(CC)_{ap}$				444сл	470cp	452	446c		
	462	462	407	450сл	467	459	432c	402	
o(USnU)	403CJI	463cp	48/	401C	467cp	404		492сл	
$\nu(CC)_{XUH. K}$	5.40	5.40	5 4 1	525	546	5 4 1	5.42	5.40	
ð(OSnO)	542сл 554ол	542сл	541	эзэсл	546сл	541	543сл	540сл	
$u(\mathbf{S}_{\mathbf{n}}C)$	515on	515cm	522						
$v(SIIC)_s$	578сп	515cp	533						
$\delta(CC)$	603сл		608	600сл		605		614ст	
$\delta(CC)_{XUH. K, Henn}$	619сл		008	615сл		005		01401	
O(CO)	017051			015051					
V(SIIO)				731cn		740	730c		
0(CC) _{ар, непл}				696cp		670	698c		
δ(CH)	1072сп		1088	1006сл	1000cp	1029	0780	1000cp	
v(CC)	10,2001		1000	1066cp	1000 c p	1087		1000 0 p	
$\delta(CC)_{XUH. K}$	1004сл		1029	996cp		1011	998сп		
U(CC) _{ap}	1001031		102)	1023cp		1039	1023сл		
				1073cp		1090	1075cp		
δ(CCH) _{magar}	1176cp		1199	P			P		
$\delta(CO)$	1								
v(CH)snalk									
δ(CCH) _{mager}				1170c		1199	1189сл	1160сл	
$\delta(CO)$									
$\delta(CC)_{PN}$ area	1223сл		1222	1214сл		1222	1205сл	1197сл	
- <u>-</u> - /1Du, cken	1268сл		1229	1261сл		1228	1260сл		
ν(CC) _{хин к}	1300c		1335	1292c		1280			
δ(CH) _{KDVT Been}									
δ(CO)									

Частоты колебаний в спектрах комплексов (5)—(7), v (см⁻¹)

Окончание табл.								бл. 2
1	2	3	4	5	6	7	8	9
δ(CH)				1430	1481сл	1497	1430cp	
$\delta(CC)_{Ph}$				1480			1480cp	
δ(CH)	1325cp	1348сл	1335	1353сл		1335	1356сл	1357сл
v(CC) _{хин. к}	1349cp			1393сл			1395сл	
	1366cp							
v(COSn)	1336cp		1325	1315cp		1321	1320cp	
$\nu(CC)_{ap}$					1569cp	1619		1569cp
$\delta(CH)_{ap}$					1579cp	1632		1579cp
v(C=C)	1535c	1535c	1584	1530c	1535c	1583	1523c	1530c
	1595cp	1595c		1595c	1556сл		1605cp	1591cp
					1595cp			
v(C=O) _{коорд}				1627сл	1616cp	1659		
v(C=O)	1640cp	1660c	1679	1646c	1643c	1680		
	1660cp			1660c	1655c			

Область 3100—2800 см⁻¹. Для идентификации исследуемых комплексов в спектральной области 3100—2800 см⁻¹ наиболее полезны спектры КР, так как образцы регистрируются без использования вазелинового масла и растворителей, имеющих полосы поглощения в данной области.

Полосы поглощения в области 3100—3000 см⁻¹ обусловлены валентными колебаниями связей С—Н хиноновых колец ($v_{C_{хинон}-H}$) лиганда и фенильных заместителей при атоме олова ($v_{C_{аром}-H}$) [6]. В экспериментальных КР спектрах комплексов (1)—(3) и (5) валентные колебания $v_{C_{аром}-H}$ проявляются в виде одной полосы средней интенсивности с частотой 3067 см⁻¹. В КР спектрах комплексов (4), (6) и (7) наблюдается интенсивная полоса с частотой 3055 см⁻¹, которая относится к валентными колебанию $v_{C_{аром}-H}$. В области 3000—2800 см⁻¹ полосы поглощения обусловлены валентными колебанию $v_{C_{аром}-H}$. В области 3000—2800 см⁻¹ полосы поглощения обусловлены валентными колебаниями связей С—Н алифатических групп (v_{C-H}). В спектрах наблюдается также группа полос с максимумами при 2992, 2958, 2920, 2881 см⁻¹, которые относятся к антисимметричным (v_{C-H}^{as}) и симметричным (v_{C-H}^{s}) колебаниям метильных групп *трет*-бутильных заместителей лиганда L (рис. 2). Идентификация алкильных заместителей СН₃, С₂H₅, С₄H₉, связанных с атомом олова, в спектрах комплексов (1)—(3) и (5) в данной области затруднена вследствие перекрывания полос.

Область 1700—1500 см⁻¹. Сравнительный анализ КР и ИК спектров в области 1700— 1500 см⁻¹ позволяет получить дополнительные сведения о структурных особенностях исследуемых соединений. В ИК и КР спектрах 2-гидрокси-3,6-ди-*трет*-бутил-*пара*-бензохинона и комплексов (1)—(6) на его основе валентным колебаниям свободной карбонильной группы

 $(v_{C=O})$ соответствует сложная полоса поглощения, состоящая из двух компонентов с максимумами при ~1650 см⁻¹ (v_{as}) и ~1640 см⁻¹ (v_s) (см. табл. 1, 2). Соотношение интенсивностей этих двух полос в ИК и КР спектрах существенно различается и зависит от типа комплекса.

Исходный моногидрокси-*пара*-хинон (LH), используемый в качестве лиганда в исследуемых комплексах,

Рис. 2. Разделение полос валентных колебаний v_{C-H} КР спектра в комплексе $L_2Sn(CH_3)_2$ на составляющие: экспериментальный спектр (1), теоретический контур (2)

существует в виде двух таутомеров (*пара* и *орто*) бензохинонового типа. В кристаллическом состоянии присутствуют обе формы, тогда как в растворе преобладает одна из изомерных форм в зависимости от природы растворителя. Так, *пара*-изомер стабилизируется за счет хелатного эффекта, который усиливается с понижением полярности растворителя [10]. В ИК спектре гидрокси-*пара*-хинона в растворе CCl₄ валентные колебания свободной карбонильной группы проявляются в виде двух полос поглощения с частотами при 1655 и 1638 см⁻¹, причем низко-частотная полоса является более интенсивной. В КР спектре соотношение интенсивностей полос 1651 и 1638 см⁻¹ является противоположным.

Из табл. 1 видно, что валентным колебаниям свободной карбонильной группы ($v_{C=O}$) в КР спектрах бис-лигандных комплексов (1)—(4) соответствует интенсивная полоса поглощения с частотой ~1640 см⁻¹, а коротковолновая компонента (v_{as} 1651 см⁻¹) в спектрах отсутствует, хотя она имеется в спектре исходного лиганда. В КР спектрах комплексов (1)—(3) наблюдается интенсивная полоса с максимумом ~1612 см⁻¹, которая соответствует валентным колебаниям группы C=O ($v_{C=O}^{\kappa oopд}$), координированной с атомом олова. В спектре КР комплекса (4) $v_{C=O}^{\kappa oopд}$ соответствуют две полосы с максимумами 1622 и 1611 см⁻¹ (см. табл. 1).

В экспериментальных ИК спектрах комплексов (1)—(4) в области 1690—1590 см⁻¹ наблюдается широкая полоса поглощения, которую мы разделили на четыре составляющие линии с максимумами 1651, 1640, 1621 и 1610 см⁻¹ (рис. 3). Две первые малоинтенсивные компоненты относятся к валентным колебаниям свободной карбонильной группы ($v_{C=0}$), а третья (наиболее интенсивная) и четвертая — к валентным колебаниям $v_{C=0}^{\text{коорд}}$. Из рис. 3 видно, что идентификация свободной карбонильной группы в исследуемых комплексах затруднена, поскольку малоинтенсивная полоса $v_{C=0}$ перекрывается интенсивной полосой поглощения $v_{C=0}^{\text{коорд}}$. Частоты свободной и координированной карбонильных групп в комплексах заметно различаются ($\Delta = v_{C=0} - v_{C=0}^{\text{коорд}} = 30 \text{ см}^{-1}$). Согласно рентгеноструктурным данным [7], донорно-акцепторное взаимодействие между атомами кислорода O(1), O(4) и атомом олова не сопровождается изменением длины связи C=O лиганда. Поэтому наблюдаемая в ИК спектре полоса поглощения является результатом смешивания валентных колебаний $v_{C=0}^{\text{коорд}}$ и $v_{C=C}$ с преобладающим вкладом последнего. Полоса средней интенсивности с максимумом около 1560 см⁻¹ в ИК и КР спектрах комплексов (1)—(3) характеризует валентные колебания связей ($v_{C=C}$) хиноновых колец (см. табл. 1). В комплексе $L_2 \text{Sn}(C_6 \text{H}_5)_2$ в указанном диапазоне присутствуют дополнительные

1700 1680 1660 1640 1620 1600 1580 1560 1540 1520 1500 *v*, см⁻¹

Рис. 3. Разложение полос поглощения валентных колебаний связей C=O и $C_{xинон}=C_{xинон}$ в ИК спектре комплекса $L_2Sn(CH_3)_2$ (растворитель — хлороформ): экспериментальный спектр (1), теоретический контур (2)

Рис. 4. Разложение полос поглощения валентных колебаний связей С=О и С_{хинон}=С_{хинон} в ИК спектре комплекса LSn(CH₃)₃, растворитель — хлороформ: экспериментальный спектр (1), теоретический контур (2)

полосы поглощения, соответствующие валентным колебаниям v_{C-H} бензольных колец (см. табл. 1).

Приведенные отнесения полос в спектральной области 1700—1500 см⁻¹ находятся в довольно хорошем согласии с выполненными нами квантово-химическими расчетами (см. табл. 1).

В отличие от комплексов (1)—(4) область 1700—1500 см⁻¹ в ИК и КР спектрах комплекса LSn(CH₃)₃ (5) более сложная для интерпретации (см. табл. 2). Данное соединение является координационным полимером с межмолекулярными донорно-акцепторными связями олово—кислород [7]. Эти связи разрушаются при растворении, что подтверждается различием ИК спектров комплекса (5) в кристаллическом состоянии и в растворе. Аналогичные различия наблюдались для 2-(трифенилстаннилокси)-3,6-ди-*трет*-бутилбензохинона-1,4 LSn(C₆H₅)₃ (6), который в монокристалле имеет структуру цепного металлополимера с мостиковыми гидрокси*пара*-хиноновыми лигандами и шестикоординационным атомом олова в качестве металлоцентра [8].

В ИК спектрах поликристаллического комплекса (5), как и в случае $LSn(C_6H_5)_3$ [8], наблюдаются четыре полосы 1660, 1640, 1595 и 1535 см⁻¹ (см. табл. 2). Две наиболее высокочастотные полосы соответствуют валентным колебаниям карбонильных групп, участвующих в слабом межмолекулярном взаимодействии с атомом олова соседней молекулы (v_{C=0}). Две другие полосы, по нашему мнению, отвечают валентным колебаниям v_{C=C} хиноновых колец. В КР спектре полоса с частотой 1640 см⁻¹ отсутствует. ИК и КР спектры растворов комплекса (5) содержат три полосы 1655, 1637 (в КР 1612 см⁻¹) и 1555 см⁻¹. На рис. 4 показано разделение сложной полосы на четыре составляющих. Полосы поглощения v_{C=0} в растворе смещаются с понижением частоты примерно на 5 см⁻¹. Величина сдвига полосы поглощения свободных карбонильных групп v_{C=O} зависит от полярности растворителя и оказывается максимальной (10 см⁻¹) в случае неполярных растворителей. Валентные колебания v_{C=0}^{коорд} проявляются в ИК спектре в виде интенсивной узкой полосы с максимумом ~1630 см⁻¹, а в спектре КР — с максимумом 1612 см⁻¹. Следует отметить, что в ИК спектрах комплекса (5) вторая компонента v_{C=O}^{коорд} (1612 см⁻¹) проявляется в виде слабого плеча на интенсивной полосе 1630 см⁻¹ в полярных растворителях (тетрагидрофуран, хлороформ), а в случае неполярных растворителей (гексан, ундекан) она отсутствует. В отличие от координационного полимера (5) (см. табл. 2) в мономерных молекулах валентным колебаниям v_{C=C} хиноновых колец соответствует частота 1555 см⁻¹. Для подтверждения отнесения колебаний получены КР и ИК спектры для вновь полученного комплекса ((C₆H₅)₃Sn)₂L', в котором свободные группы C=O отсутствуют. В области 1700—1500 см⁻¹ ИК спектров наблюдаются только две полосы: 1605 и 1530 см⁻¹ (см. табл. 2, рис. 5), а полосы поглощения валентных колебаний свободных карбонильных групп отсутствуют. Наблюдаемые в спектре полосы (1605 и 1530 см⁻¹) относятся к валентным колебаниям двойных связей хиноновых колец (v_{C=C}) и проявляются в тех случаях, когда лиганды L или L' находятся между двумя атомами олова. Частоты данных полос в ИК спектре комплекса $((C_6H_5)_3Sn)_2L'$ близки к частотам соответствующих полос в ИК спектре поликристаллического образца комплекса (**5**) (см. рис. 5, кривые 2, 3).

В КР спектре комплекса LSn(C₆H₅)₃ валентные колебания свободных карбонильных групп $v_{C=O}$ наблюдаются в виде двух интенсивных полос с частотой 1655 и 1643 см⁻¹. Кроме того, в спектре присутствуют полосы поглощения 1595 и 1535 см⁻¹. Однако в отличие от ИК спектра [8] в КР спектре имеются полосы поглощения с максимумами 1616 ($v_{C=O}^{\text{коорд}}$) и 1556 см⁻¹ ($v_{C=C}$ хиноновое кольцо) (см. табл. 2, рис. 6). КР спектры мономерного и полимерного комплекса (6), как и ИК спектры [8], различаются (см. рис. 6, кривые *1*, *2*).

Температурные измерения растворов комплексов (6) и (7) не показали изменений спектров в области 1700—1500 см⁻¹.

В спектре КР комплекса $LSn(C_6H_5)_3$ интенсивные полосы с частотами 1580 и 1570 см⁻¹ соответствуют полносимметричным колебаниям ароматических колец.

Рис. 5. ИК спектры комплекса $LSn(CH_3)_3$ (раствор в циклогексане (1), кристаллическое состояние (2)) и ИК спектр комплекса $((C_6H_5)_3Sn)_2L'$ (суспензия в вазелиновом масле (3))

Рис. 6. КР спектры комплекса $LSn(C_6H_5)_3$: кристаллическое состояние (1), раствор в хлороформе (2), раствор в тетрагидрофуране (3)

Область 600—150 см⁻¹. Для исследования строения 2-гидрокси-3,6-ди-*трет*-бутил-*п*-бензохиноновых комплексов олова (5) и (6), а также комплекса $((C_6H_5)_3Sn)_2L'$ большой интерес представляет область 600—150 см⁻¹, в которой находятся полосы валентных колебаний связей Sn—C (v_{Sn-C}) и Sn—O (v_{Sn-O}) [11—17]. При сопоставлении теоретических и экспериментальных спектров установлено, что в спектрах КР комплексов (1)—(3) и (5) проявляются только симметричные валентные колебания олово—углерод (см. табл. 1, 2). Полоса поглощения 298 см⁻¹ относится к валентным колебаниям v(Sn(C₆H₅)).

Деформационным колебаниям связей $\delta(OSnO)$ в комплексах (1)—(7) отвечают малоинтенсивные полосы с частотами 540 и 470 см⁻¹.

Проведенные нами квантово-химические расчеты частот КР спектров показали, что полосы поглощения с частотами 197 и 242 см⁻¹ в спектре комплекса $L_2Sn(C_6H_5)_2$ относятся к деформационным веерным и ножничным колебаниям $\delta(C_{ap}SnC_{ap})$. Колебания фенильных колец характеризуются полосой средней интенсивности с максимумом при 470 см⁻¹, которая сохраняет свое положение и в комплексе $LSn(C_6H_5)_3$. В дальней ИК области они проявляются дублетом 450 и 442 см⁻¹. В спектре комплекса $LSn(C_6H_5)_3$ деформационным колебаниям $\delta(C_{ap}SnC_{ap})$ соответствуют слабая полоса поглощения с частотой 233 см⁻¹ и интенсивное поглощение при 209 см⁻¹.

выводы

На основании сравнительного анализа колебательных спектров и проведенных квантовохимических расчетов интерпретированы полосы поглощения в спектрах КР комплексов олова(IV) на основе 2-гидрокси-3,6-ди-*трет*-бутил-*пара*-бензохинона. Установлено, что в КР спектрах бис-лигандных комплексов валентные колебания свободной ($v_{C=O}$) и координированной с атомом олова ($v_{C=O}^{\text{коорд}}$) карбонильных групп проявляются интенсивными полосами поглощения с частотой 1640 и 1612 см⁻¹ соответственно. В КР спектре комплекса $L_2Sn(C_6H_5)_2$ эти полосы имеют частоты 1622 и 1611 см⁻¹. Сопоставлены ИК и КР спектры комплексов LSnX₃ (L — 2-окси-3,6-ди-*трет*-бутил-*пара*-бензохинон; X = CH₃, C₆H₅) и впервые синтезированного комплекса олова(IV) на основе 2,5-дигидрокси-3,6-ди-*трет*-бутил-*пара*-бензохинона, содержащего фенильные заместители у атома металла. Установлено, что полосы поглощения с максимумом ~1600 и ~1530 см⁻¹ относятся к валентным колебаниям двойных связей хиноновых колец ($v_{C=C}$).

Публикация подготовлена по результатам работы, выполненной на оборудовании центра коллективного пользования "Аналитический центр ИМХ РАН" (г. Нижний Новгород).

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проекты № 14-03-31361 мол а и № 14-03-31069-мол а).

СПИСОК ЛИТЕРАТУРЫ

- 1. Abakumov G.A., Poddel'sky A.I., Grunova E.V. et al. // Angew. Chem. Int. Ed. 2005. 44. P. 2767.
- 2. Piskunov A.V., Mescheryakova I.N., Fukin G.K. et al. // Chem. Eur. J. 2008. 14. P. 10085.
- 3. Piskunov A.V., Mescheryakova I.N., Fukin G.K. et al. // Dalton Trans. 2013. 42. P. 10533.
- 4. Piskunov A.V., Ershova I.V., Fukin G.K. et al. // Inorg. Chem. Commun. 2013. 38. P. 127.
- 5. Беккер Ю. Спектроскопия. М.: Техносфера, 2009.
- 6. Смит А.А. Прикладная ИК спектроскопия. М.: Мир, 1982.
- 7. Пискунов А.В., Мещерякова И.Н., Фукин Г.К. и др. // Координац. химия. 2014. **40**. С. 205.
- 8. Кабарова Н.Ю., Черкасов В.К., Захаров Л.Н. и др. // Изв. АН СССР. Сер. хим. 1992. 12. С. 2798.
- 9. *Каталог* спектров комбинационного рассеяния углеводородов / Под ред. Г.Н. Жижина. М.: Наука, 1976.
- 10. Шурыгина М.П., Маркина О.В., Дружков Н.О. и др. // Изв. АН. Сер. хим. 2012. **6**. С. 1202.
- 11. Alvarez-Boo P., Casas J. S., Castineiras A. et al. // Inorg. Chem. Acta. 2003. **353**. P. 8.
- 12. Дернова В.С., Ковалев И.Ф. Колебательные спектры соединений элементов IVБ группы. Саратов: Изд-во Саратов. ун-та, 1979.
- 13. *Чумаевский Н.А.* Колебательные спектры элементоорганических соединений элементов IVБ и VБ групп. М.: Наука, 1971.
- 14. Pettinari C., Marchetti F., Pettinari R., Martini D., Drozdov A., Troyanov S. // Inorg. Chem. Acta. 2001. 325. P. 103.
- 15. Kolb U., Drager M. // Spectrochim. Acta A. 1997. 53. P. 517.
- 16. Bishop M.E., Schaeffer C.D., Zuckerman Jr. et al. // Spectrichim. Acta A. 1976. 32. P. 1519.
- 17. Poller R.C. // J. Inorg. Nucl. Chem. 1962. 24. P. 539; Spectochim. Acta. 1966. P. 935.

258