УДК 66.011 DOI: 10.15372/KhUR20170214

Разработка модели реактора трансалкилирования для повышения энерго- и ресурсоэффективности производства этилбензола

С. А. КОШКИН^{1,2}, И. О. ДОЛГАНОВА², Е. Н. ИВАШКИНА²

¹ООО «Научно-исследовательская организация "Сибур-Томскнефтехим"», Томск, Россия

²Томский политехнический университет, Томск, Россия

E-mail: dolganovaio@tpu.ru

(Поступила 21.06.16; после доработки 14.12.16)

Аннотация

Раскрыт подход к разработке математических моделей промышленных процессов с использованием квантово-химических методов расчета термодинамических параметров целевых и побочных реакций в совокупности с анализом экспериментальных данных работы промышленного процесса трансалкилирования – одной из стадий получения этилбензола. Разработана схема превращений в процессе трансалкилирования, определены термодинамические показатели целевых и побочных реакций, составлена кинетическая модель и определены ее параметры. Адекватность модели, реализованной в среде HYSYS, проверена путем сравнения с промышленными данными. Отмечены перспективы применения разработанной математической модели процесса трансалкилирования для повышения энерго- и ресурсоэффективности производства этилбензола в плане повышения селективности процесса и минимизации затрат на выработку заданного количества продукции.

Ключевые слова: этилбензол, алкилирование, трансалкилирование, математическая модель

введение

Алкилирование бензола этиленом – основное направление потребления бензола (50 % от общего объема). Полученный в результате этилбензол (ЭБ) является промежуточным продуктом в цепочке получения АБС (сополимер акрилонитрила, бутадиена, стирола) и САН (сополимер стирола и акрилонитрила) пластиков, стирол-бутадиеновых каучуков, полистирола. Мировое производство ЭБ по состоянию на 2014 г. оценивалось в 37 млн т/год [1].

В первых технологиях получения ЭБ использовался гомогенный катализатор на основе хлорида алюминия, однако с появлением гетерогенных катализаторов процесс алкилирования бензола этиленом на хлоралюминиевом катализаторе морально устарел, и в настоящее время установки такого типа уже не создаются. Технологии с использованием гетерогенного катализатора включают две последовательные стадии: алкилирование бензола с этиленом и трансалкилирование (TA) полиэтилбензолов (ПЭБ) до ЭБ. Оба процесса протекают на цеолитсодержащих катализаторах в адиабатических реакторах [2-4].

Высокая конкуренция на рынках конечных переделов ЭБ, экономические и экологические аспекты диктуют задачи повышения ресурсоэффективности производства. Достижение такого результата возможно за счет интеграции экспериментальных данных и мате-

$$H_5C_2 \longrightarrow C_2H_5 + 2 \longrightarrow C_2H_5$$

Схема 1.

матического моделирования путем внедрения прикладных математических моделей в промышленное производство для поиска оптимальных технологических режимов. Подобные модели уже разработаны для ряда нефтеперерабатывающих и нефтехимических процессов [5-7], которые успешно используются в производстве для мониторинга и прогнозирования работы крупнотоннажных установок переработки углеводородного сырья, в качестве тренажеров для инженерно-технического персонала, а также отличаются от известных аналогов учетом физико-химической сущности процессов, протекающих в реакторных аппаратах. Авторы ряда работ исследовали кинетические закономерности и определили параметры уравнений предложенных кинетических схем процессов алкилирования и ТА, предложили механизмы протекающих реакций [8-15] и разработали подходы к составлению моделей процесса, используя данные промышленных установок [16, 17]. Однако на текущий момент в открытых источниках не удалось найти описание построенной модели для жидкофазного процесса получения ЭБ на гетерогенных катализаторах, включающее как стадию алкилирования, так и стадию ТА.

Построение математической модели такого многостадийного процесса осложняется тем, что, по сравнению с гомогенной технологией, эффективность гетерогенного процесса определяется бо́льшим числом параметров, таких как распределение (квенчинг) этилена в реактор алкилирования, соотношения бензола и ПЭБ в реакторе ТА. Эти и другие технологические параметры зависят от состава перерабатываемого сырья и активности применяемых катализаторов, поэтому требуют корректировки во время эксплуатации промышленной установки. Разработанная математическая модель будет пригодна как для проведения подобных оптимизационных исследований, так и в качестве тренажера при подготовке инженерно-технического персонала нефтехимических предприятий.

Цель данной работы – разработка математической модели реактора жидкофазного ТА ПЭБ на цеолитсодержащем катализаторе для прогнозирования состава продуктов (схема 1).

Реакция ТА сопровождается перемещением алкильной группы от одной молекулы к другой. Целевым превращением рассматриваемой системы является равновесная реакция ТА диэтилбензолов (ДЭБ) с бензолом в ЭБ (см. схе-

Рис. 1. Механизм процесса трансалкилирования.

му 1). При этом равновесные концентрации получаемых продуктов слабо зависят от температуры (тепловой эффект реакции $\Delta H_{600} = 5.8$ кДж/ моль [1]), но сильно зависят от начального соотношения Б/ДЭБ. Механизм реакции ТА на центрах Бренстеда представлен на рис. 1.

АНАЛИЗ ПРОМЫШЛЕННЫХ ДАННЫХ РАБОТЫ РЕАКТОРА ТРАНСАЛКИЛИРОВАНИЯ

В основу разработанной модели процесса ТА заложены показатели работы промышленной установки. Выполнен анализ данных работы промышленного реактора ТА за период с 01.10.2013 г. по 31.08.2015 г.: показания датчиков контроля температуры, расход, давление процесса, – а также данных лабораторных анализов сырья и продуктов установки.

На рис. 2 представлены данные по среднемесячным расходам основных потоков в реактор ТА по сырью и соотношению бензола к ПЭБ. В рассматриваемый период соотношение расходов бензола к ПЭБ и нагрузка на реактор непрерывно изменялись в сторону уменьшения. Экспериментальные данные с промышленной установки были использованы в качестве исходных при разработке уравнений математической модели и решении обратной кинетической задачи.

Для определения ключевых компонентов с целью составления уравнений их расходования и образования (кинетических уравнений) в математической модели процесса сравнивали концентрации веществ, определенные в лаборатории. В табл. 1 приведены данные по составу сырьевого и продуктового потоков: максимальная, средняя и минимальная наблюдаемые концентрации по веществам за рассмотренный период. Для уменьшения числа компонентов и, соответственно, размерности математической модели при ее построении учитывались лишь вещества с концентрацией не менее 0.1 мас. %. Это допущение обосновано тем, что обычно ошибка анализа методом газовой хроматографии составляет не менее 0.1-5 мас. %. Исходя из данных табл. 1, такими веществами (компонентами) являются легкие углеводороды (П), нафтены С₆ (ЦГ), нафтены С₇ (МЦГ), бензол (Б), этилбензол (ЭБ), диэтилбензолы (ДЭБ), бутилбензол (ББ), триэтилбензол (ТЭБ), тяжелые фракции (Т), дифенилэтаны (ДФЭ). При экспериментальном определении состава сырья и продуктов отдельные вещества объединяют в группы: П (смесь углеводородов (алканы и алкены) до С₅); нафтены С₆, которые состоят преимущественно из циклогексана с примесью метилциклопентана; нафтены С7, состоящие преимущественно из метилциклогек-

Рис. 2. Экспериментальные данные работы установки ТА ПЭБ за период с 01.10.2013 по 31.08.2015 гг.

ТАБЛИЦА 1

Состав сырьевого и продуктового потоков в процессе ТА

Вещества	Выход, мас. % Реакционная масса			Вход, мас. %					
				ПЭБ			Бензол	Бензол	
	Макс.	Среднее	Мин.	Макс.	Среднее	Мин.	Макс.	Средне	ее Мин.
Легкие УВ	7.00	3.59	0.76	0.03	0.01	0.00	5.65	3.14	0.30
Нафтены С6	1.18	0.46	0.16	0.02	0.00	0.00	4.17	2.14	0.50
Нафтены С7	0.08	0.02	0.00	0.00	0.00	0.00	0.47	0.21	0.02
Бензол	71.67	52.95	45.02	0.02	0.00	0.00	98.48	94.32	90.73
Толуол	0.05	0.01	0.00	0.01	0.00	0.00	0.05	0.01	0.00
Этилбензол	39.44	29.90	11.11	9.84	0.06	0.00	0.91	0.19	0.01
Изопропилбензол	0.02	0.00	0.00	0.07	0.01	0.00	0.00	0.00	0.00
н-Пропилбензол	0.05	0.01	0.00	0.14	0.02	0.00	0.00	0.00	0.00
м- и п-Ксилолы	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
о-Ксилол	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Стирол	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Этилтолуол	0.06	0.01	0.00	0.36	0.05	0.00	0.00	0.00	0.00
Метилэтилтолуол,	0.01	0.00	0.00	0.03	0.00	0.00	-	-	-
Диэтилбензол	16.80	10.73	2.00	95.18	89.33	82.30	0.00	0.00	0.00
Бутилбензол,	0.98	0.53	0.00	3.22	1.93	0.53	0.00	0.00	0.00
Триметилбензол	0.02	0.01	0.00	0.08	0.02	0.00	0.00	0.00	0.00
Триэтилбензол	2.88	1.25	0.04	10.17	7.38	2.41	-	_	-
Тяжелые фракции	0.28	0.13	0.01	0.30	0.08	0.00	-	_	-
Дифенилэтан	0.21	0.06	0.00	0.24	0.00	0.00	-	-	-
Х-примеси	1.16	0.33	0.06	6.47	1.11	0.17	0.00	0.00	0.00

Примечание. Прочерк - не обнаружено.

сана с примесью диметилциклопентана; ДЭБ; ТЭБ; ДФЭ (включают все возможные изомеры); Т – тяжелые компоненты, продукты дальнейшего алкилирования.

$$X_{i} = \frac{F_{\rm BX} x_{i} - F_{\rm BAIX} x_{i}}{F_{\rm BX} x_{i}} \cdot 100 \%$$
(1)

где X_i — конверсия *i*-го компонента; $F_{\rm BX}$, $F_{\rm BEIX}$ — массовый расход входящего и выходящего потока; x_i — массовая доля *i*-го компонента.

Для оценки направления протекания реакций по компонентам (расходование или образование) по уравнению (1) для каждого компонента рассчитывали среднюю степень конверсии за исследуемый период, мас. %: П -73.36, ЦГ 66.75, МЦГ 84.87, Б 17.50, ЭБ -34574.69, ДЭБ 62.18, ББ 13.04, ТЭБ 47.07, Т -695.23, ДФЭ -2655.16. Компоненты, конверсия которых по расчету отрицательная, образуются в процессе ТА, а компоненты, для которых величина конверсии положительная, образуются в ходе процесса алкилирования.

РАЗРАБОТКА ФОРМАЛИЗОВАННОЙ СХЕМЫ ПРЕВРАЩЕНИЙ

Из статистического анализа работы реактора ТА выделены ключевые компоненты для разработки формализованной схемы превращений: П, ЦГ, МЦГ, Б, ЭБ, ДЭБ, ББ, ТЭБ, Т, ДФЭ. Анализ литературных данных показал, что в среде выделенных компонентов при наличии цеолитсодержащего катализатора могут протекать следующие реакции: трансалкилирование, диспропорционирование, деалкилирование, каталитический крекинг, циклизация алкенов, крекинг циклопарафинов, сопряженное гидрирование, конденсации [2-12]. На основании перечисленных типов реакций разработана формализованная схема превращений (ФСП) углеводородов в реакторе ТА (рис. 3).

Формализованная схема превращений включает десять обратимых и две необратимые связи. Этилбензол образуется за счет

Рис. 3. Формализованная схема превращения углеводородов в процессе ТА.

трансалкилирования ДЭБ и ТЭБ с бензолом (1, 3), диспропорционирования двух молекул ДЭБ (2), алкилирования бензола этиленом (4), разложения ДФЭ с образованием дополнительно одной молекулы бензола (5), деалкилирования ББ с образованием этилена (9). Дифенилэтан образуется по маршруту (5) при взаимодействии бензола с ЭБ. Бутилбензол в процессе ТА подвергается деалкилированию либо с получением бензола и бутена (10), либо с получением этилена и ЭБ (9). Компонент П образуется в результате крекинга циклоалканов и сопряженного гидрирования (11, 12), крекинга тяжелых фракций (8), деалкилирования алкилароматических соединений (4, 6, 9, 10). Тяжелые фракции образуются за счет дегидроциклизации и конденсации ДЭБ (7), алкилирования ДЭБ, ЭБ, ТЭБ с алкенами (8). На следующем шаге было необходимо подтвердить протекание данных реакций вычислением энергии Гиббса (ΔG) посредством квантово-химических расчетов (КХР).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Подтверждение термодинамической вероятности протекания реакций

Для подтверждения термодинамической возможности протекания реакций в процессе ТА использовались КХР. Расчеты проведены в программе Gaussian-98 с использованием метода теории функционала плотности (DFT) на уровне B3LYP при температуре 200 °C и давлении процесса 3.4 МПа. Этот метод выбран в силу высокой точности по сравнению с эмпирическими методами. Уровень B3LYP является наивысшим среди уровней DFT, используемых программой Gaussian, а базисный набор выбран таким образом, чтобы сохранить управляемость расчетов, но при этом не снизить точность описания физической ситуации [13]. Поскольку в реальном процессе реакции между компонентами и образующими их веществами многочисленны, то для оценки параметра ΔG взяты характерные реакции по типу. На-

ТАБЛИЦА 2

Величины
 ΔG для связей ФСП (температура 200 °C, давление 3.4 МПа)

Номер связи Связь		ΔG, кДж/моль		
в ФСП				
1	ДЭБ + Б \leftrightarrow 2ЭБ	-28.36		
2	2ДЭБ \leftrightarrow ЭБ + ТЭБ	-36.01		
3	ТЭБ + Б \leftrightarrow ЭБ + ДЭБ	-11.00		
4	$\mathrm{AE} \leftrightarrow \mathrm{HE} \leftrightarrow \mathrm{AE}$	-33.69		
5	$ЭБ + Б \leftrightarrow ДФЭ$	25.99		
6	ДЭБ \leftrightarrow ЭБ + П	-1.86		
7	ДЭБ \rightarrow Т	242.80		
8	$\Pi + B/ЭB/ДЭB/ТЭB \leftrightarrow T$	-19.36		
9	$EE \leftrightarrow EE + II$	150.80		
10	$B + \Pi \leftrightarrow BB$	-11.21		
11	МЦГ \leftrightarrow П	2.89		
12	ЦГ \leftrightarrow П	38.23		

пример, для реакции крекинга нафтенов рассматривались реакции разложения циклогексана в две молекулы пропилена или в молекулу бутена и этилена. В результате, связь в ФСП характеризовалась наименьшей полученной энергией Гиббса из рассмотренных характерных реакций для ее типа. Так, для трансалкилирования орто-, мета-, пара-изомеров ДЭБобразующих компонентов ДЭБ ФСП наименьшая рассчитанная КХР $\Delta G = -28.36$ кДж/моль для о-ДЭБ. Соответственно, для связи 1 ФСП ΔG имеет это значение (табл. 2).

Величина ΔG , в первую очередь, указывает, в какую сторону смещено равновесие реакции. Принято, что реакция обратима при условии $\Delta G = \pm 50$ кДж/моль. Для связей 7 и 9 ΔG имеет высокое положительное значение, что даже с учетом произведения концентраций, избытка ДЭБ и ББ указывает на малую вероятность протекания такого рода превращений в изучаемой системе. Поэтому данные реакции из формализованной схемы были исключены. Таким образом, окончательная формализованная схема содержит 10 обратимых превращений, а превращения 7 и 9 не рассматриваются.

Разработка математического описания процесса трансалкилирования

На основе ФСП записаны кинетические уравнения для рассматриваемых реакций с допущением о псевдогомогенности [14–17].

Известно, что реакции ТА протекают в кинетической области с минимальными диффузионными ограничениями, ввиду использования катализатора с большим диметром пор и полостей [18]. В качестве модели реактора выбрана модель реактора идеального вытеснения (РИВ):

$$\mathrm{d}X_i = r_i S \mathrm{d}l / C_i V \tag{3}$$

$$\mathrm{d}C_i = r_i S \mathrm{d}l / V \tag{4}$$

где X_i — конверсия *i*-го компонента; r_i — скорость расходования/образования *i*-го компонента; S — площадь сечения реактора; l — линейный размер реактора, м; C_{i_0} — начальная концентрация *i*-го компонента, моль/л; C_i — текущая концентрация *i*-го компонента, моль/л; V — объемный расход реакционной смеси, м³/с.

Данное допущение принято на основании данных о конструкции аппарата и его геометрических размерах: соотношения длины и

Номер связи	Форма уравнения связи	Прямая		Обратная	
ФСП		A	Е, Дж/моль	A	Е, Дж/моль
1	$k_1 C_{\text{ДЭБ}} C_{\text{Б}} - k_{-1} C_{\text{ЭБ}}^2$	$3\cdot 10^8$	78 373	115 596	50 757
2	$k_2 C_{\mathcal{J} \ni \mathcal{E}}^{2} - k_{-2} C_{\Im \mathcal{E}} C_{\Im \mathcal{E}}$	$3\cdot 10^8$	65 333	91 977	$28\ 997$
3	$k_3 C_{\mathrm{T} \ni \mathrm{E}} C_{\mathrm{E}} - k_{-3} C_{\ni \mathrm{E}} C_{\mathrm{J} \ni \mathrm{E}}$	$3\cdot 10^8$	82 008	2532	40 002
4	$k_4 C_{ m \partial E}$ – $k_{-4} C_{ m E} C_{ m II}$	$1.54\cdot 10^6$	96 966	143	94 937
5	$k_5 C_{\Im B} C_{B}$ – $k_{-5} C_{I I \Phi \Im} C_{II}$	3573	$63\ 475$	$16\ 912$	26 818
6	$k_6 C_{{ m J} m eta m E} - k_{-6} C_{ m eta m E} C_{ m II}$	2937	96 793	436	96 070
8a	$k_{8\mathrm{a}}C_{\Pi}C_{\mathrm{E}}$ – $k_{-8\mathrm{a}}C_{\mathrm{T}}$	1248	57 606	$67\ 249$	47 655
8б	$k_{86} C_{\Pi} C_{ m \partial E} - k_{-86} C_{ m T}$	1787	88 954	98 091	$49\ 075$
8в	$k_{8\mathrm{\scriptscriptstyle B}}C_{\mathrm{\Pi}}C_{\mathrm{Д} \Im \mathrm{E}} - k_{-8\mathrm{\scriptscriptstyle B}}C_{\mathrm{T}}$	1787	88 954	98 091	$49\ 075$
8г	$k_{8\mathrm{r}}C_{\mathrm{II}}C_{\mathrm{T}\Im\mathrm{E}} - k_{-8\mathrm{r}}C_{\mathrm{T}}$	1787	88 954	98 091	$49\ 075$
10	$k_{10}C_{ m EE}~-~k_{-10}C_{ m E}C_{ m II}$	$92\ 050$	$96\ 084$	0.006	122 189
11	$k_{11}C_{ ext{MIIF}}$ – $k_{-11}C_{ ext{II}}$	$238\ 246$	12 761	30 097	69 366
12	$k_{12}C_{\Pi\Gamma} - k_{-12}C_{\Pi}$	39 477	$13\ 586$	64 303	$25\ 498$

ТАБЛИЦА З

Результаты определения параметров кинетических уравнений

Примечание. 1. А и E – предэкспоненциальный множитель и энергия активации реакции соответственно. 2. Концентрации C выражены в моль/л. 3. Предэкспоненциальный множитель может иметь размерности л/(моль · c) или c⁻¹ в зависимости от формы уравнения (порядка реакции). диаметра промышленного аппарата, равного 4.6, и присутствия насыпного катализатора, который в большей степени способствует установлению режима течения модели РИВ [19, 20].

Предпочтительно для веществ, образующихся в результате процесса, использовать уравнение (4), а для расходующихся веществ – выражение (3).

Для упрощения модели также принято допущение об изотермическом режиме работы аппарата, поскольку процесс ТА характеризуется наблюдаемым незначительным перепадом температуры в -1...1 °С в рассматриваемый временной промежуток. По этой причине модель не учитывает изменение теплоемкости системы и не дополнена уравнением теплового баланса. В дополнении принято допущение, что условия процесса не меняются на временном интервале между лабораторными анализами. Система контроля производства позволяет анализировать состав поступающего сырья и продукты из реактора. При этом данные анализы отбираются два раза в сутки. Время отбора проб для анализа состава сырья и продуктов реакции различается.

Решением обратной кинетической задачи определены значения параметров уравнений расходования и образования компонентов сырья и продуктов. Кинетические уравнения и значения энергий активации и предэкспоненциальных множителей приведены в табл. 3. Для определения параметров кинетической модели (решения обратной кинетической задачи) использовались экспериментальные данные о составе сырьевых и продуктовых потоков промышленной установки (см. табл. 1), данные об изменении основных технологических параметров работы реактора ТА (см. рис. 2), включая температуру, интервал изменения которой составляет 195-210 °С. Программная реализация алгоритма решения обратной кинетической задачи выполнена в пакете gPROMS.

Проверка адекватности математической модели процесса трансалкилирования

Проверка модели на адекватность проводилась посредством сравнения рассчитанных по модели значений концентраций углеводородов в продуктах с данными работы реактора ТА в широком временном интервале. На основе уравнений математической модели разработана компьютерная модель процесса в

Рис. 4. Сравнение экспериментальных (точки) и расчетных (линии) концентраций продуктов (ЭБ, ДЭБ, ТЭБ) на выходе из реактора ТА.

HYSYS v. 8.8, в которой выполнены расчеты реактора TA. Состав и расход сырья, температура входа и выхода из реактора, давление задавались согласно дате отбора сырья. На рис. 4 приведены результаты сравнения рассчитанных и экспериментальных данных.

выводы

1. Формализованная схема превращений углеводородов в процессе ТА разработана с учетом следующих компонентов: легкие углеводороды, нафтены С₆, нафтены С₇, бензол, ЭБ, ДЭБ, ББ, ТЭБ, тяжелые, ДФЭ. Модель реактора ТА, в основе которой лежит разработанная ФСП, с достаточной точностью описывает изменение концентрации основных продуктов ЭБ, ДЭБ, ТЭБ в интервале изменения температур 195–210 °С и соотношения сырья Б/ПЭБ = 1.6–2.6 (по массе).

2. Модель реактора TA описывает расход и образование прочих компонентов системы: легкие углеводороды, нафтены C_6 , нафтены C_7 , ББ, тяжелые, ДФЭ. Учет данных компонентов позволяет использовать модель реактора TA при моделировании процесса получения ЭБ целиком, включая блок разделения продуктов, в таких пакетах программ, как Aspen HYSYS. Данная возможность позволяет в дальнейшем перейти к оптимизации показателей процесса.

3. Реакции (1), (2), (4)-(6), (8), (10)-(12) – трансалкилирования ДЭБ с Б, диспропорционирования двух молекул ДЭБ, трансалкилирования ТЭБ с Б, деалкилирования ЭБ, образование ДФЭ, алкилирования гомологами этилена ароматических компонентов системы, деалкилирования ББ и крекинга нафтенов – термодинамически вероятны в условиях процесса; реакция конденсации ДЭБ в нафталины (продукты уплотнения) и крекинг боковой цепи ЭБ маловероятны, что подтверждено результатами КХР.

4. Программно-реализованная математическая модель реактора ТА может быть использована для прогнозирования состава продуктов процесса трансалкилирования изучаемого процесса при изменении состава перерабатываемого сырья и температуры в реакторе.

Работа выполнена в рамках гранта Президента РФ для государственной поддержки молодых российских ученых (проект МД-5019.2016.8).

СПИСОК ЛИТЕРАТУРЫ

- Основные процессы нефтепереработки. Справочник / Пер. с англ., 3-го изд., под ред. О. Ф. Глаголевой, О. П. Лыкова. СПб.: ЦОП "Профессия", 2011. 944 с.
- 2 Galadima A., Muraza O. // Chem. Eng. Proc.: Process Intensification. 2011. Vol. 1, Issue 1. P. 31–36.
- 3 Chua L., Vazhnova T., Mays T., Lukyanov D., Rigby S. // J. Catal. 2011. Vol. 283, Issue 1. P. 68–74.
- 4 Liu K., Xie S., Liu S., Xu G., Gao N., Xu L. // Fluid Phase Equilibria. 2007. Vol. 260, Issue 1. P. 146–152.
- 5 Al-Kinany M. C., Jibril B. Y. // Chem. Eng. Process. 2005. Vol. 44. P. 841–846.
- 6 Mokoema K. Alkyl-Transfet (transalkylation) Reactions of Alkylaromatics on Solid Acid Catalyst: PhD Thesis. Johannesburg, 2005. 406 p.
- 7 Tseng-Chang T., Shang-Bin L., Ikai W. // Appl. Catal., A. 1999. Vol. 181. P. 355–398.
- 8 Hongjun Y., Wenyu L., Yi P. // Pet. Sci. Technol. 2009. Vol. 24. P.1079–1088.
- 9 Forni L., Cremona G. // Appl. Catal., A. 1995. Vol. 121. P. 261–272.
- 10 Forni L., Amarilli S. // Appl. Catal., A. 1993. Vol. 103. P. 173–182.
- 11 Ebrahimi A. N., Zolfaghari A. // Chem. Eng. Process. 2011. Vol. 50. P. 31–36.
- 12 Chen X., Huang S., Cao D., Wang W. // Chem. Eng. J. 2011. Vol. 167, Issue 1. P. 240–254.
- 13 Odedairo T., Al-Khattaf S. // Chem. Eng. Sci. 2010. Vol. 65, Issue 8. P. 2472-2480.
- 14 Corma V., Soria M., Schnoeveld E. // J. Catal. 2000. Vol. 192, Issue 1. P.163-173.
- 15 Игнатов С. К. Квантово-химическое моделирование молекулярной структуры, физико-химических свойств и реакционной способности: уч. пособие. Самара: Универ-групп, 2005. 32 с.
- 16 Чудинова А. А., Нурмаканова А. Е., Салищева А. А., Ивашкина Е. Н., Гавриков А. А. // Химия уст. разв. 2014. Т. 22, №. 6. С. 569–575.
- 17 Щербакова Ю. А., Долганова И. О., Ивашкина Е. Н., Иванчина Э. Д. // Изв. вузов. Физика. 2011. Т. 54, № 12/ 2. С. 98–103.
- 18 Фетисова В. А., Ивашкина Е. Н., Иванчина Э. Д., Кравцов В. А. // Катализ в пром-сти. 2009. Т. 6, № 1. С. 27–33.
- 19 Nurmakanova A. E., Salishcheva A. A., Chudinova A. A., Syskina A. A., Ivashkina E. N. // Proc. Chem. 2014. Vol. 10. P. 430–436.