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Алгоритм машинного обучения XGBoost используется для оценки природного поля напря-
жений. С применением метода корреляции Пирсона установлено, что характерными пара-
метрами каротажа, наилучшим образом коррелирующими с минимальным значением гори-
зонтального (тектонического) напряжения, являются данные спектрального гамма-каротажа, 
глубокого каротажа, индукционного каротажа, акустического каротажа, глубина залегания 
и содержание в породе кальция, а с максимальным значением горизонтального (тектониче-
ского) напряжения — глубина, данные спектрального гамма-каротажа, каротажа самопроиз-
вольной поляризации, кавернометрии и плотностного каротажа. Результаты модели XGBoost 
сравнивались с моделью линейной регрессии, моделью опорных векторов и моделью слу-
чайного леса. Для проверки общей способности модели выполнена k-блочная перекрестная 
валидация. Показано, что алгоритм XGBoost позволяет прогнозировать природные напряже-
ния в породе на основе малого объема исходных данных с точностью 94 % и высоким уров-
нем генерализации данных. Модель линейной регрессии обладает наибольшей скоростью 
расчета и минимальной точностью прогнозирования. Модели опорных векторов и случайно-
го леса показали приемлемую точность. Полученные с помощью алгоритма XGBoost резуль-
таты универсальны и могут использоваться при решении проблем, связанных с прогнозиро-
ванием природного поля напряжений в горных породах. 

Природное поле напряжений, алгоритм XGBoost, плотный песчаник, машинное обучение 
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Природные напряжения — это естественные напряжения в земной коре, не вызванные 
инженерной деятельностью и изменяющиеся в течение продолжительного геологического 
времени под влиянием тектонических сдвижений. Их изменение влияет на разработку нефте-
газовых месторождений и безопасность ведения подземных работ. Ввиду низкой пористости 
и низкой проницаемости нетрадиционных нефтегазовых коллекторов, коммерческая отдача 
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таких пластов достигается благодаря крупномасштабной интенсификации добычи с помощью 
гидроразрыва. Основной фактор, влияющий на его эффективность, — местные (природные) 
напряжения. При разработке подземных месторождений такие напряжения — определяющий 
фактор разрушения пород вокруг выработок. Точное прогнозирование поля напряжений важ-
но при разработке нетрадиционных нефтегазовых месторождений и для предотвращения гор-
ных ударов при подземных горных работах. 

В настоящее время предложено множество методов прямого и косвенного измерения 
напряжений [1]. Методы прямого измерения включают микросейсмические методы, гидрораз-
рыв, метод обрушения стенки скважины, акустическое измерение на основе эффекта Кайзера, 
геологическое картирование и т. д. [2 – 9], методы косвенного измерения — метод восстанов-
ления напряжений, анализ напряжений путем термоупругого бурения, анализ геологических 
структур, анализ неупругой деформации и др. [10 – 16]. Измерительные методы позволяют по-
лучать данные о напряжениях в породе, однако на точность данных влияет точность измери-
тельного оборудования, к тому же такие измерения весьма затратны. 

Для снижения затрат предложен ряд моделей расчета природного поля напряжений. 
В [14] разработана расчетная модель напряженного состояния одиночного разлома, залегаю-
щего близко к поверхности на основе его смещений, в [17] — модель расчета напряжений 
на основе критерия Хука – Брауна. Также существуют модели Мэттьюза и Келли, Андерсона, 
Кулона – Мора, Хуана, Гурра, комбинированная пружинная и др. [18 – 20]. 

В связи с последними достижениями в области регистрации данных некоторые исследова-
тели применяли технические средства для прогнозирования напряжений в массиве. В [21] для их 
анализа использовалась фотосъемка. В [22, 23] регистрировались многополярные акустические 
сигналы с целью выявления трещин в породных формациях и определения ориентации при-
родных напряжений для определения механических свойств породы. В [24] рассчитан коэффи-
циент сплошности породного массива с помощью регистрации акустических сигналов, а также 
напряжения in situ на основе использования статических механических свойств. В [25] анали-
зировались изображения кернов и петрофизические данные для изучения распределения 
напряжений в складчатом поясе Келасу. 

Использовались также методы численного моделирования для анализа природных напряже-
ний. В [26] описано текущее напряженное состояние газоносного района Dibei на основе карота-
жа скважин и численного моделирования. В [27] проведено исследование с использованием про-
граммы 3DECs для моделирования напряженного состояния карьеров Раваччоне и Фантискритти 
в бассейне Каррары (Италия). В [28] посредством программного обеспечения (ПО) UDEC 
и FLAC моделировалось влияние обратных разломов на развитие напряжений. В [29] с помощью 
метода конечных элементов построена геологическая модель угольных месторождений и смоде-
лировано распределение напряжений в разные геологические периоды. В [30] предложены мето-
ды расчета двух- и трехмерных полей напряжений на основе нескольких измерительных точек 
и граничных условий на дневной поверхности. В [31] метод дискретных элементов в ПО 3DEC 
применялся для анализа напряженного состояния трещиноватого породного массива. 

Перечисленные модели имеют свои недостатки. Большинство моделей по прогнозу напря-
жений в массиве — эмпирические, обладают региональными ограничениями, а также содержат 
большое количество параметров, которые необходимо рассчитывать по другим методам 
и формулам, что делает определение природных напряжений весьма громоздким. К тому же 
определение большого количества параметров увеличивает ошибки вычисления. При этом ра-
боты, рассматривающие природные напряжения, сфокусированы на традиционные месторож-
дения, в то время как традиционные и нетрадиционные песчаные коллекторы существенно раз-
личаются по литологическим свойствам. 
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В связи с достижениями в области компьютерных технологий и непрерывной оптимизацией 
расчетных алгоритмов для прогнозирования напряжений стали применяться методы машинного 
обучения, анализирующие сложные нелинейные зависимости между большими наборами дан-
ных. Расчет природного поля напряжений на основе каротажных данных обладает уникальными 
преимуществами, так как каротаж осуществляется на значительной глубине и обеспечивает 
большой объем выборки. В [32] метод опорных векторов использовался для прогнозирования 
напряжений угля и породы на основе кавернометрии, компенсированного нейтронного карота-
жа, спектрального гамма-каротажа, плотностного каротажа и глубокой резистивиметрии. Рас-
смотренные данные обладают корреляцией с природными напряжениями и позволяют их непо-
средственный прогноз с точностью 94 %. В [33] нейронная сеть с обратным распространением 
применялась для прогнозирования механических свойств породы на основе данных акустиче-
ского каротажа, а также выполнялось косвенное прогнозирование природного поля напряжений 
в сланце. Модели, в основе которых лежит метод опорных векторов или нейронная сеть с обрат-
ным распределением, обладают высокой точностью в условиях большого объема исходных дан-
ных, что в свою очередь при недостатке данных приводит к недо- или переобучению. 

Недостаток данных ограничивает применение методов машинного обучения для прогнози-
рования напряжений в горной породе [34]. В настоящей работе предложено прямое прогнози-
рование напряжений в плотном песчанике на основе алгоритма XGBoost. Он преобразует фор-
мулу Тейлора второго порядка для функции потерь, так как альтернативная функция учитывает 
ограничения при прогнозировании. Определены характерные параметры модели по коэффици-
енту корреляции Пирсона с помощью каротажных данных из нескольких источников и постро-
ены следующие модели: XGBoost; линейной регрессии; случайного леса; опорных векторов. 
Все модели проверялись методом k-блочной перекрестной валидации на основе ряда оценоч-
ных критериев. Для прогнозирования природных напряжений на разной глубине участка D1 
коллектора из плотного песчаника на нефтяном месторождении Daqing в Китае выбрана 
наиболее эффективная модель. 

МЕТОДЫ ИССЛЕДОВАНИЯ 

В области разработки нетрадиционных нефтегазовых месторождений и подземных инже-
нерных работ природные напряжения можно разделить на вертикальное (гравитационное) 
напряжение, а также минимальное и максимальное горизонтальные (тектонические) напряже-
ния. Гравитационная компонента напряжений возникает в результате давления налегающих 
пород, изменяется от плотности и глубины залегания формации h и рассчитывается на основе 
данных плотностного каротажа: 

 
0

( )
H

v h gd hσ ρ=  , (1) 

где ( )hρ  — функция изменения плотности формации при изменении h, г/см3; g  — ускорение 
свободного падения, м/с2. 

Если плотность измеряется с определенным интервалом по глубине, то данные плотности 
дискретны, в этом случае для расчета гравитационной компоненты напряжений аппроксими-
рующий интеграл плотности заменяется на кумулятивную сумму плотностей в каждой точке 
измерения: 

 avev i LEV
i

gh gRσ ρ ρ= + , 

где aveρ  — средняя плотность над целевым пластом; 0.125LEVR =  м — интервал измерения 
плотности; iρ  — плотность коллектора в i-м интервале. 
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Тектонические напряжения имеют две главные компоненты: напряжения в направле-
нии x  и y . Они вычисляются как 

 1 ( )
1x v p pp pμσ σ α α

μ
= − +

−
, (2) 

 1 ( )
1y v p pp pμσ σ α α

μ
= − +

−
. (3) 

Здесь μ  — коэффициент Пуассона; pp  — поровое давление породной формации, МПа; α  — 
коэффициент эффективного напряжения (коэффициент Био). 

Тектоническое напряжение — составляющая совокупного напряжения. Оно возникает  
в результате динамического поведения земной коры, т. е. сдвижения геологических структур 
или сейсмической активности и имеет очевидный анизотропный характер. Фактическое 
напряжение анизотропно, и вектор максимального горизонтального напряжения обычно сона-
правлен с суммарным вектором тектонических напряжений. Главная составляющая тектониче-
ского напряжения — напряжение тектонических сдвижений в направлении x  и y : 

 2 ( )x x v p pp pσ ξ σ α α= − + , 

 2 ( )y y v p pp pσ ξ σ α α= − + , 

где xξ , yξ  — коэффициенты тектонического напряжения (коэффициенты бокового отпора) 
в направлении x  и y . 

Для расчета максимального и минимального главных горизонтальных напряжений необхо-
димо определить другие параметры: коэффициент Пуассона; константу Био; коэффициент бо-
кового отпора и т. д. Добавление дополнительных параметров увеличивает объем измерений 
и повышает погрешность вычисления конечного значения, поэтому предлагается использовать 
методы машинного обучения для прямого прогнозирования горизонтального напряжения 
на основе данных каротажа скважин. 

Рассматриваемый целевой коллектор расположен на участке D1 нефтяного месторожде-
ния Daqing и состоит из плотного песчаника. На участке D1 ранее получены каротажные 
данные (рис. 1), а именно: данные спектрального гамма-каротажа (GR), самопроизвольной 
поляризации (SP), кавернометрии (CAL), глубокого (LLD), поверхностного (LLS), микробо-
кового (MSFL), акустического (AC), глубокого индукционного (ILD), среднего индукционно-
го (ILM) каротажа, а также глубина (D), плотность (DEN), содержание песчаника (SAND), 
глины (VSH) и кальция (VCA). Так как данные разных видов каротажа отражают соотноше-
ния между физическими параметрами коллектора, они представляют собой большой объем 
информации, относительно непрерывны и могут использоваться для прогнозирования при-
родного поля напряжений. 

Исследование разделено на следующие этапы: определение характерных параметров с по-
мощью коэффициента корреляции Пирсона; нормализация данных; построение моделей машин-
ного обучения (XGBoost, линейная регрессия (LR), случайный лес (RF), метод опорных векторов 
(SVM)) для выявления нелинейных зависимостей между характерными параметрами и природ-
ными напряжениями; оценка эффективности моделей и их сравнение между собой (рис. 1). 
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Рис. 1. Схема прогнозирования природного поля напряжений в нефтяном коллекторе из плотного 
песчаника месторождения Daqing на основе каротажных данных (их описание дано в тексте) 

Определение характерных параметров. В совокупности рассмотрен массив из 1600 набо-
ров данных каротажа скважины T на участке D1 коллектора из плотного песчаника нефтяного 
месторождении Daqing (рис. 2). 

 
Рис. 2. Данные каротажа скважины T на участке D1 
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Для определения соответствия данных каротажа с напряжениями использовался коэффи-
циент корреляции Пирсона τ , представляющий собой отношение отклонения от среднего 
и среднего квадратичного отклонения между двумя переменными: 

 
1

1
1

n
i i

i X Y

X X Y Y
n

τ
σ σ=

   − −
=    −    

 . 

Здесь X  — среднее значение выборки X; iX  — i-е значение в выборке X; Xσ  — среднее квад-
ратичное отклонение выборки X; n  — общее количество значений в выборке. При 1τ → −  
между переменными существует сильная отрицательная корреляция, при 1τ →  — сильная по-
ложительная корреляция, при 0τ →  — корреляция отсутствует. 

На рис. 3 приведены результаты определения коэффициента Пирсона. 

 
Рис. 3. Результаты расчета коэффициента корреляции Пирсона 
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Вертикальное (гравитационное) напряжение имеет наибольшую корреляцию с глубиной 
залегания и плотностью породы (параметры превышают 0.7). Этот результат соответствует 
формуле (1). Наибольшая корреляция выявлена между минимальным главным горизонтальным 
напряжением и глубиной (0.62). Эти величины имеют между собой сложную нелинейную за-
висимость. Далее наблюдается сильная корреляция между интенсивностью радиоактивности 
пород (GR) и минимальным главным горизонтальным напряжением (0.61). Обычно, чем боль-
ше содержание мадстоуна в породе, тем выше GR, так как GR отражает изменения литологиче-
ского состава в коллекторе и напряжений. Сильная отрицательная корреляция отмечается меж-
ду минимальным главным горизонтальным напряжением и LLD, LLS, ILD, ILM. Эти парамет-
ры отражают различия в электропроводности породы, показывая литологический состав мас-
сива и коэффициент Пуассона. В формулах (2), (3) коэффициент Пуассона — важный пара-
метр, влияющий на напряжения; AC и VCA также влияют на минимальное главное горизон-
тальное напряжение. 

Для минимального главного горизонтального напряжения введен пограничный коэффициент 
корреляции Пирсона, равный 0.5. Параметры, превышающие 0.5, считаются характерными. Ко-
эффициенты параметров LLD и LLS, ILD и ILM близки к 0.5, поэтому в качестве характерных 
рассмотрены только LLD и ILD. Выявлены характерные параметры, наиболее влияющие на ми-
нимальное главное горизонтальное напряжение: D; GR; LLD; ILD; AC; VCA. Подобным образом 
проанализировано максимальное главное горизонтальное напряжение с пограничным значением 
0.4 и выявлены следующие характерные параметры: D; DEN; GR; SP; CAL. 

Нормализация данных. Параметры каротажа весьма не равномерны при использовании 
размерных величин, например глубина скважины может измеряться в тысячах метров, тогда 
как GR — в десятках. Требуется нормализация данных, дающая два преимущества: во-первых, 
она исключает негативное влияние размерности, упрощает вычислительную сложность модели 
и снижает или исключает необходимость обходных расчетов; во-вторых, сокращает трудности, 
связанные с низкой конвергенцией данных, продолжительным временем обучения и низкой 
точностью модели из-за слишком большого разброса данных. 

В работе использовался дисперсионный метод стандартизации данных, позволяющий 
привести все характерные параметры в интервал [0, 1]. Для каждого параметра минимальное 
значение приводилось к 0, максимальное — к 1 по формуле min max min( ) / ( )norm

i ix x x x x= − − ,  
где norm

ix  — i-е нормализованное значение характерного параметра; ix  — i-е значение харак-
терного параметра x; maxx , minx  — минимальное и максимальное значения характерного пара-
метра x . На рис. 4 представлены результаты нормализации характерных параметров. 

Модель линейной регрессии. Линейная регрессия — простейший регрессионный алгоритм: 
 0 1 1 2 2 ... n nz x x xθ θ θ θ= + + + + , 

где 0θ  — точка пересечения; 1 ~ nθ θ  — коэффициенты. Данное выражение можно представить 
в виде матрицы: 
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Рис. 4. Распределение характерных параметров до нормализации данных (а, б) и после нее (в, г): 
а, в — минимальное главное горизонтальное напряжение; б, г — максимальное 

Основная задача линейной регрессии заключается в построении прогнозирующей функ-
ции z  для выявления линейной зависимости между входной характерной матрицей x  и меткой 
значений y . Основа построения прогнозирующей модели — определение Tθ  и 0θ  методом 
наименьших квадратов (рис. 5). Используя функцию z , на основе матрицы характерных пара-
метров x  модель линейной регрессии предлагает ряд значений меток yспрог для решения раз-
личных задач по прогнозированию непрерывных величин. 

 
Рис. 5. Линейная регрессия по методу наименьших квадратов 

Преимущества алгоритма линейной регрессии: 
— прост и не требует большого количества времени для вычислений; 
— высокая точность определения линейных зависимостей в наборах данных; 



Ду Тун, Ли Юйвэй 

 185

— эффективен при малом объеме входных данных; 
— результаты предрасположены к интерпретации; 
— не требуется корректировка параметров. 
Тем не менее данный алгоритм не подходит для нелинейных данных, так как обладает низ-

кой точностью и склонен к переобучению. 
Модель опорных векторов. В ее основе лежит теория статистики, основная идея — опреде-

ление гиперплоскости (границы принятия решений) для максимального уменьшения ошибки 
прогнозирования, особенно ошибки классификации малого массива исходных данных (рис. 6). 
Преимущества данного метода: обработка высокоразмерных данных; высокая генерализирую-
щая способность; подходит для небольших выборок; решение нелинейных задач; хорошая 
надежность и способность к интерпретации данных. 

 
Рис. 6. Диаграмма метода опорных векторов 

Модель случайного леса. Данный метод — оптимизированный алгоритм ансамблевого обу-
чения, в рамках которого идея ансамблевого обучения интегрирована во множественные деревья 
решений (рис. 7). Метод выявляет наиболее надежные результаты среди большого количества 
базовых деревьев. Окончательный результат прогнозирования учитывает все модели деревьев. 
Для повышения точности и предотвращения переобучения от одиночного дерева происходит 
случайная обработка разных деревьев решений. Каждое дерево решения — независимый объект. 

 
Рис. 7. Принцип метода случайного леса 

Метод случайного леса позволяет: 
— обрабатывать высокоразмерные данные без выбора характерных параметров; 
— после обучения выявлять наиболее значимые характерные параметры; 
— выполнять параллельный расчет, ускоряя вычислительный процесс; 
— визуализировать процесс, упрощая последующий анализ результатов. 
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В выборках данных с большим уровнем шума данный метод склонен к переобучению. Ха-
рактерные параметры с большим разделением значений существенно влияют на принятие ре-
шения, тем самым и на результат прогнозирования. 

Модель XGBoost. Алгоритм XGBoost — форма критического градиентного бустинга. Гра-
диентный бустинг обучает множество моделей постепенно, аддитивно и последовательно. Ал-
горитм позволяет преодолеть деревьям решений собственные вычислительные ограничения 
и достичь инженерных целей с высокой скоростью и эффективностью. Так как данный алго-
ритм относится к ансамблевым методам обучения, базой для обучения является массив деревь-
ев решений, а спрогнозированное значение каждого дерева добавляется в окончательное зна-
чение. В алгоритме XGBoost используется формула Тейлора второго порядка для функции по-
терь в качестве суррогатной функции, позволяющей выявить оптимальную точку деления 
и узел выходного значения на дереве регрессии. XGBoost вводит значения подузлов и количе-
ство поддеревьев в функцию потерь, позволяя избежать переобучения, а также значительно по-
вышает эффективность моделирования по сравнению с обычным градиентным бустингом де-
ревьев решений (GBDT) за счет оценки точки разветвления регрессионного дерева и паралле-
лизации подузлов совместно с характеристиками конвергентности второго порядка. 

Преимущества алгоритма XGBoost: 
— использует для предыдущей итерации формулу Тейлора второго порядка для функции 

потерь, тогда как GBDT — формулу первого порядка, поэтому XGBoost обладает бόльшей 
точностью и осуществляет такое же обучение за меньшее количество итераций; 

— использует многопоточный выбор наиболее оптимальной точки сегментации, повышая 
скорость вычислений; 

— вводит слагаемое регуляризации в функцию потерь для контроля за сложностью модели 
и для уменьшения вероятности переобучения. 

Критерий оценки. Для оценки прогнозирования использовался коэффициент корреляции 
R2, определяющий отклонение между двумя переменными величинами: 
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где n — количество выборок; iy  — значение i-й точки данных; ˆiy , iy  — спрогнозированное 
и среднее значения; числитель — сумма квадрата разностей между фактическим и спрогнози-
рованным значениями; знаменатель — сумма квадрата разностей между фактическим и сред-
ним значениями, которая описывает степень дисперсии данных. 

Коэффициент корреляции R2 изменяется в интервале [0, 1]: 0 — отсутствие соответствия 
между спрогнозированным и фактическим значениями; 1 — отсутствие ошибок моделирова-
ния (полное соответствие). Также выполнялась оценка по средней абсолютной (MAE) и сред-
неквадратической (RMSE) ошибке: 
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Способность моделей машинного обучения к генерализации — важный показатель их  
эффективности. В процессе машинного обучения модели определяется функция потерь, кото-
рая минимизируется для повышения эффективности модели. Обучение модели выполняется 
для решения практических проблем, и простая минимизация функции потерь не гарантирует 
высокую эффективность или даже возможность решения рассматриваемых потерь. 

Данная проблема решается k-блочной перекрестной валидацией — распространенным ме-
тодом проверки генерализирующей способности моделей машинного обучения. Основная идея 
заключается в разделении массива данных на k отдельных блоков, где один блок проверочный, 
а k – 1 блоки — обучающие. Процесс повторяется k-итераций, где каждый раз выбирается дру-
гой проверочный блок. В качестве индекса эффективности, по которому можно сделать вывод 
о способности модели генерализировать неизвестные данные, используется среднее значение k 
результатов валидации. На рис. 8 метод перекрестной валидации показан на примере разделе-
ния массива на 10 блоков. 

 
Рис. 8. Перекрестная валидация на примере разделения массива на 10 блоков 

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ 

Выполнено прогнозирование максимального и минимального главных горизонтальных 
напряжений с помощью четырех моделей машинного обучения. Проанализировано 1600 наборов 
данных, которые были разделены на обучающий и проверочный наборы в соотношении 8 : 2. 

Из таблицы видно, что модель линейной регрессии имеет наибольшую скорость вычисле-
ния максимального главного горизонтального напряжения (среднее время расчета 0.00101 с), 
модель случайного леса — минимальную (1.46031 с); время расчета модели опорных векторов 
и XGBoost составило 0.05337 и 0.16002 с соответственно. Модель линейной регрессии выявляет 
только линейные зависимости между наборами данных, поэтому ее вычислительная скорость 
максимальна. Для модели случайного леса требуется обработать большое количество деревьев 
решений, так как окончательный прогноз учитывает все деревья, поэтому вычислительная ско-
рость минимальна. Такой же характер скорости вычисления наблюдается и при прогнозировании 
минимального главного горизонтального вычисления: для модели линейной регрессии среднее 
время расчета составило 0.00099 с, для модели случайного леса — 1.76879 с. При прогнозе мак-
симального главного напряжения наибольшую точность имеет модель XGBoost со средними 
значениями R2 = 97.5 %, MAE = 0.185, RMSE = 0.062, что на 15.8, 4.1 и 1.2 % выше, чем точность 
модели линейной регрессии, опорных векторов и случайного леса. Аналогичный характер точно-
сти имеет прогнозирование минимального главного горизонтального напряжения. Для модели 
XGBoost средние значения R2, MAE и RMSE составили 94.4 %, 0.248 и 0.108 соответственно. 
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Оценка эффективности рассматриваемых моделей 

Главное  
горизонтальное  

напряжение 
Модель 

Время расчета, с MAE R2 RMSE 

max / min / среднее max / min / среднее max / min / среднее max / min / среднее 

Максимальное 

LR 0.00001 / 0.00200 / 0.00101 0.441 / 0.600 / 0.493 0.797 / 0.868 / 0.842 0.308 / 0.554 / 0.386
RF 1.4282 / 1.5467 / 1.4603 0.180 / 0.236 / 0.212 0.958 / 0.977 / 0.963 0.057 / 0.109 / 0.088

SVM 0.0285 / 0.0686 / 0.0534 0.265 / 0.326 / 0.288 0.920 / 0.953 / 0.937 0.119 / 0.209 / 0.152
XGBoost 0.1521 / 0.1998 / 0.1600 0.157 / 0.204 / 0.185 0.966 / 0.979 / 0.975 0.053 / 0.075 / 0.062

Минимальное 

LR 0.00099 / 0.00199 / 0.00099 0.376 / 0.512 / 0.436 0.788 / 0.878 / 0.838 0.239 / 0.452 / 0.313
RF 1.7157 / 1.8204 / 1.7688 0.234 / 0.282 / 0.253 0.916 / 0.947 / 0.941 0.106 / 0.148 / 0.116

SVM 0.0284 / 0.0805 / 0.0542 0.274 / 0.341 / 0.313 0.871 / 0.933 / 0.8965 0.135 / 0.265 / 0.179
XGBoost 0.1662 / 0.1752 / 0.1689 0.221 / 0.271 / 0.248 0.921 / 0.958 / 0.944 0.078 / 0.141 / 0.108

П р и м е ч а н и е: LR — линейная регрессия; RF — модель случайного леса; SVM — модель опорных векторов. 
 
На рис. 9 приведены результаты перекрестной валидации. 

 
Рис. 9. Прямоугольная диаграмма R2, MAE, RMSE: а, в, д — максимальные напряжения,  
б, г, е — минимальные 

После 10 расчетных итераций результаты R2 модели XGBoost более сконцентрированы, 
площадь участка наименьшая. Коэффициенты R2 модели XGBoost наибольшие среди всех по-
строенных. Точность k-блоковой перекрестной валидации относительно устойчива, модель  
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обладает высокой способностью генерализировать данные. Эффективность модели при обуче-
нии и проверке не различается, поэтому она способна обрабатывать неизвестные данные. Ре-
зультаты 10 итераций модели линейной регрессии наиболее рассеяны (участок на рис. 9 имеет 
наибольшую площадь), R2 — наименьшее, модель линейной регрессии имеет низкую устойчи-
вость и точность при прогнозировании поля напряжений. Участок модели опорных векторов 
имеет относительно большую площадь, так как после регрессии метод опорных векторов 
не способен прогнозировать за пределами тренировочного массива данных, что приводит 
к переобучению при моделировании рассеянных данных. Если модель не проверена после 
обучения и переобучена, она может эффективно прогнозировать в рамках текущего массива 
данных, но не способна генерализировать данные в более широком диапазоне. Для XGBoost 
значения MAE и RMSE наименьшие. При прогнозировании максимального главного горизон-
тального напряжения результаты перекрестной валидации для XGBoost максимально скон-
центрированы, а соответствующий прямоугольник имеет наименьшую площадь, демонстри-
руя наибольшую эффективность модели. При прогнозировании минимального главного гори-
зонтального напряжения результаты перекрестной валидации для модели случайного леса мак-
симально сконцентрированы и соответствующий прямоугольник имеет наименьшую площадь, 
показывая наибольшую эффективность модели. 

Обученные модели применялись к тестовому массиву данных, состоящему из 20 % от об-
щего массива. На рис. 10 показано изменение максимального и минимального главных гори-
зонтальных напряжений для четырех моделей в зависимости от глубины. Сплошная линия — 
фактическое напряжение yфакт, кружок — спрогнозированные значения yпрог. 

 
Рис. 10. Прогнозирование максимального (а) и минимального (б) главных горизонтальных 
напряжений рассматриваемыми моделями на основе тестового массива данных 
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Значения, спрогнозированные моделью XGBoost, максимально близки к фактическим 
и немного различаются при глубине 1800 – 1820 м. Видна значительная разница между факти-
ческими и спрогнозированными значениями моделью линейной регрессии, особенно на глу-
бине 1880 – 1940 м. Модель опорных векторов и модель случайного леса показали средние ре-
зультаты, что соответствует результатам k-блочной перекрестной валидации. Точность модели 
XGBoost в прогнозировании максимального главного горизонтального напряжения превышает 
точность прогнозирования минимального напряжения, что согласуется с результатами расчета 
коэффициента корреляции R2 из таблицы (для максимального главного горизонтального 
напряжения R2 = 0.975, для минимального R2 = 0.944). 

На рис. 11 представлена эффективность прогнозирования поля природных напряжений 
в пределах заданного массива данных. Горизонтальная ось — фактические значения yфакт, вер-
тикальная — спрогнозированные разными моделями yспрог, сплошная линия — равенство фак-
тических и спрогнозированных значений, т. е. чем ближе точка к данной линии, тем выше точ-
ность прогноза. Значения, спрогнозированные моделью линейной регрессии, наиболее откло-
няются от фактических, что подтверждается максимальными MAE (0.493 и 0.436). Значения, 
спрогнозированные моделью XGBoost, отклоняются от фактических менее всего, что подтвер-
ждается минимальными значениями MAE (0.185 и 0.248). Значения моделей опорных векторов 
и случайного леса имеют средние результаты. 

 
Рис. 11. Точность прогнозирования максимального (а) и минимального (б) главных горизон-
тальных напряжений моделями линейной регрессии (LR), случайного леса (RF), опорных 
векторов (SVM) и XGBoost 
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ВЫВОДЫ 

В соответствии с методом корреляции Пирсона, характерными параметрами для опреде-
ления минимального главного горизонтального напряжения являются глубина, GR, LLD, 
ILD, AC, VCA, для максимального — глубина, плотность, GR, SP, CAL. Модель линейной 
регрессии имеет наименьшее время расчета для максимального (0.00101 с) и минимального 
(0.00099 с) главных горизонтальных напряжений, но при этом дает наименьшую точность 
(R2 = 84.2 и 83.8 %). Модель XGBoost сочетает высокую скорость расчета (0.16002 и 0.16895 с) 
и наибольшую точность (R2 = 97.5 и 94.4 %). Результаты k-блочной перекрестной валидации 
выявили, что модель XGBoost обладает высокой генерализирующей способностью и надежно-
стью. Модели опорных векторов и случайного леса дают средние результаты. В рамках тесто-
вого массива данных модель XGBoost также показала наибольшую точность. Последнее под-
тверждает, что рассмотренный метод исследования обладает определенной универсальностью 
и может быть расширен на решение других проблем, связанных с прогнозированием природ-
ных напряжений в массиве. 
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