2007. Том 48, № 2

Март – апрель

C. 242 – 250

УДК 541.183.02+543.422.4

ИССЛЕДОВАНИЕ СВОЙСТВ ВОДЫ В ОБРАТНЫХ МИЦЕЛЛАХ TRITON N-42 МЕТОДОМ ИК-ФУРЬЕ-СПЕКТРОСКОПИИ

© 2007 Т.Ю. Подлипская*, А.И. Булавченко, Л.А. Шелудякова

Институт неорганической химии им. А.В. Николаева СО РАН, Новосибирск

Статья поступила 10 сентября 2006 г.

Исследовано распределение свободной (объемной) и связанной (гидратной) воды в обратных мицеллах Triton N-42. Доля объемной воды изменяется от 12 до 27 % при увеличении солюбилизационной емкости** (V_s/V_o) от 0,5 до 3,5 об.%. Показано наличие двух типов гидратной воды в обратных мицеллах Triton N-42: 1) связанной с гидроксильными группами и вторично связанной с оксиэтильными группами и 2) первично связанной с оксиэтильными группами и 2) первично связанной с оксиэтильными группами и солюбилизационной емкости. Полярная группа молекулы поверхностно-активного вещества гидратирована примерно шестью молекулами H₂O при $V_s/V_o = 3,5$ об.%.

Ключевые слова: обратные мицеллы, поверхностно-активные вещества, оксиэтилированный нонилфенол, солюбилизация воды, связанная (гидратная) вода, свободная (объемная) вода, ИК-Фурье-спектроскопия.

Поверхностно-активные вещества (ПАВ) в неполярных растворителях, например предельных углеводородах, образуют мицеллы обратного типа, которые состоят из поверхностного слоя и полярной нанополости. Неослабевающий интерес к исследованию тонкой структуры полярной нанополости мицелл в условиях солюбилизации воды и водных растворов связан с широким использованием обратных мицелл в качестве нанореакторов для проведения различных реакций [1, 2], синтеза наночастиц [3—5], концентрирования ионов металлов [6—10]. Изменение свойств воды в обратных мицеллах по сравнению с "обычными" водными растворами связано с малым объемом воды, заключенной в полярных полостях, и с гидратацией полярных групп молекул ПАВ. Для гидратной (связанной) воды характерны необычные свойства: высокая микровязкость, низкая полярность [11, 12], в то время как объемная мицеллярная вода близка по свойствам к объемной жидкой воде.

Взаимодействие воды с молекулами ПАВ исследуют с применением различных физикохимических методов, таких как ИК [13—32], ЯМР [17, 33—35], ЭПР [35—37] спектроскопия, метод абсорбционных [36—41] и флуоресцентных [11, 12, 36, 40—43] зондов, динамическое [30, 44, 45] и статическое [45] рассеяние света, малоугловое рассеяние нейтронов [46] и Х-лучей [47], калориметрия [48—50].

В целом мицеллярную воду разделяют на два находящихся в динамическом равновесии вида: свободную (объемную) и связанную (гидратную) воду [13—15], поэтому основная задача многих исследований сводилась к получению зависимости количества поверхностной воды как функции от общего содержания воды. Общее количество воды в мицеллярном растворе характеризуется солюбилизационной емкостью мицеллярного раствора (*V*_s/*V*_o) и (или) парамет-

^{*} E-mail: tatyanap@che.nsk.su

^{**} Солюбилизация — "псевдорастворение" водных растворов в органической фазе за счет взаимодействия с обратными мицеллами; солюбилизационная емкость (V_s/V_o) — отношение объема солюбилизированной водной фазы (V_s) к объему органической фазы (V_o) .

ром $W = [H_2O]/[\Pi AB] = W_{гидр} + W_{o6}$. Экспериментальная зависимость $W_{гидр}$ обычно монотонно увеличивается с ростом W, а максимальное значение $W_{гидр}$ характеризует гидратацию полярной группы ПАВ [13]. В зависимости от строения ПАВ проводят дальнейшую детализацию связанной (гидратной) воды. Следует отметить, что большая часть ИК спектроскопических исследований (как и другими методами) проведена на анионных ПАВ: Аэрозоле ОТ (NaAOT, бис(2-этилгексил)сульфосукцинат натрия) [11—24, 26, 27, 31, 32] и NaDEHP (бис(2-этилгексил)фосфат натрия) [16, 17, 23—25]. Для них обычно различают воду, гидратирующую анионные полярные группы молекул ПАВ и противоионы натрия.

Исследованию воды в мицеллярных системах на основе неионных оксиэтилированных ПАВ уделялось гораздо меньше внимания [28]. Вместе с тем использование мицеллярных растворов оксиэтилированных ПАВ перспективно для экстракционного извлечения комплексов металлов из кислых и кислотно-солевых растворов. Эффективность извлечения металла определяется разностью энергий гидратации комплексного аниона в мицелле и в исчерпываемой водной фазе [7], а условия гидратации ионов в мицелле зависят от структуры поверхностного слоя и свойств мицеллярной воды.

Кроме того, мицеллы оксиэтилированных ПАВ в зависимости от состава солюбилизированной водной фазы подвержены трансформационным переходам типа сфера→сфероцилиндр→сфероид [51], что создает большие возможности (по сравнению с Аэрозолем ОТ) синтеза наночастиц разной формы. Исследования с применением фотон-корреляционной спектроскопии и статического рассеяния света свидетельствуют о том, что размер и форма мицелл определяются распределением солюбилизированной воды между поверхностным слоем и ядром мицеллы [52, 53].

Цель данной работы заключалась в исследовании гидратации молекул оксиэтилированного ПАВ и в разработке методики определения различных состояний воды в обратных мицеллах в условиях инъекционной солюбилизации воды методом ИК-Фурье-спектроскопии.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Реагенты. В качестве мицеллообразующего ПАВ использовали оксиэтилированный нонилфенол со степенью оксиэтилирования 4 — Triton N-42 (Sigma). Для идентификации полос поглощения Triton N-42 использовали оксиэтилированные гомологи нонилфенола общей формулой C₉H₁₉C₆H₄(OCH₂CH₂)_nOH с различной степенью оксиэтилирования n = 2, 3, 4, 5 (A Φ_9 -2, -3, -4 (аналог Triton N-42), -5; Диагностикум, г. Белгород, Россия) и оксиэтилированный спирт C₁₂H₂₅(OCH₂CH₂)₄OH (Brij-30; Aldrich). ПАВ использовали без дополнительной очистки, длительное время (около 4 месяцев) выдерживали над Al₂O₃. Исследуемые растворы содержали 0,25 моль/л ПАВ в *н*-декане. Растворитель *н*-декан квалификации "ч." сушили Al₂O₃ и дважды перегоняли. Мицеллярные растворы Triton N-42 с различным содержанием воды готовили инъекционной солюбилизацией, для этого использовали бидистиллированную воду.

Методы. ИК спектры регистрировали на ИК-Фурье-спектрометре Scimitar FTS 2000 (32 скана, разрешение 4 см⁻¹). Спектры безводных растворов записывали в кюветах KBr (l = 0,12 мм) в области 4000—400 см⁻¹; для мицеллярных растворов Triton N-42, содержащих воду, использовали кюветы CaF₂ (l = 0,11 мм), и спектры записывали в области 4000—940 см⁻¹.

Разложение сложной полосы валентных колебаний $v_{as}(COC)$ групп — CH_2 —O— CH_2 и деформационных колебаний $\delta(COH)$ фрагмента — CH_2 —OH (1200—1000 см⁻¹) и полосы валентных колебаний H₂O v(OH) (3800—3000 см⁻¹) на составляющие полосы по Гауссу проводили в программе Origin 5.0. Долю воды каждого вида (P_i) рассчитывали как отношение площади гауссовой полосы (A_i) к общей площади сложной полосы ($\sum A_i$): $P_i = A_i / \sum A_i$ [19, 20, 25, 27, 32].

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Описание спектра Triton N-42 (C₉H₁₉C₆H₄(OCH₂CH₂)₄OH). Для отнесения полос поглощения были записаны спектры чистого Triton N-42 (без растворителя) в виде жидкой пленки между стеклами KBr и его 0,25 моль/л раствора в декане. При 3392 см⁻¹ расположена полоса

валентных колебаний ассоциированных (связанных Н-связью) гидроксильных групп. В мицеллярном растворе OH-группы молекул Triton N-42 в меньшей степени ассоциированы: форма полосы валентных колебаний гидроксильных групп становится более асимметричной с четко выраженным широким плечом при 3422 см⁻¹, центр смещается в высокочастотную область (3477 см⁻¹) и появляется небольшой пик мономерных (несвязанных водородной связью) гидроксильных групп при 3607 см⁻¹. Полоса деформационных колебаний молекул воды δ (H₂O) в спектрах не проявляется, что свидетельствует об отсутствии воды в Triton N-42 и его мицеллярном растворе, и полоса валентных колебаний v(OH) обусловлена только гидроксильными группами молекул ПАВ.

Валентные колебания v(CH) наблюдаются в области 3100—2800 см⁻¹. При 3000—2800 см⁻¹ проявляются v(CH) метильных и метиленовых групп, при 3100—3039 см⁻¹ — CH-колебания фенильных циклов. С валентными колебаниями v(CC) последних связаны полосы поглощения при 1610, 1581, 1512 см⁻¹. Деформационным колебаниям δ (CH) метильных и метиленовых групп соответствуют полосы в области 1450—1350 см⁻¹. При 1187 и 830 см⁻¹ проявляются δ (CH) фенильных групп.

Для выявления валентных колебаний оксиэтилированных групп v(COC) и деформационных колебаний гидроксильных групп δ(СОН) исследовали спектры Brij-30 и оксиэтилированных гомологов нонилфенола АФ₉-2, -3, -4, -5. Спектры ПАВ в области 1700—850 см⁻¹ приведены на рис. 1. Интенсивное поглощение в области 1250 см⁻¹ мы отнесли к валентным колебаниям у (СОС) оксиэтильной группы, связанной с фенильным кольцом [54—56]. В спектре Вгіј-30, у которого отсутствует фенильное кольцо, в этой области наблюдается слабое поглощение (см. рис. 1). В области 1200—1000 см⁻¹ в спектрах оксиэтилированных гомологов нонилфенола наблюдается интенсивная полоса сложной формы с максимумами при 1123, 1103 (пл.) и 1068, 1039 (пл.). Интегральная площадь этой полосы линейно увеличивается с ростом числа оксиэтилированных групп. В этой области проявляются валентные колебания $v_{as}(COC)$ оксиэтильных групп (—CH₂—O—CH₂—) и деформационные колебания б(СОН) гидроксильных групп (—CH₂—OH) [54, 55]. Проведено разложение этой сложной полосы в области 1170—1010 см⁻¹ на пять составляющих гауссианов (табл. 1). Полосы v_1 и v_2 отнесли к деформационным колебаниям гидроксильной группы $\delta(COH)$, соответственно v_3 , v_4 и v_5 к оксиэтильным группам, не связанным с фенильным кольцом. Поскольку во всех исследуемых соединениях содержится одна гидроксильная группа, они отличаются степенью оксиэтилирования (и углеводородным радикалом для Brij-30). При увеличении числа оксиэтилированных групп их вклад P(COC) в интегральную площадь A_{сум} растет и коррелирует со стехиометрическим составом (см. табл. 1). Вклад в интегральную площадь каждого "кислородного" атома, не связанного с фенильным кольцом, оказался одинаков и в среднем составлял 17,7. Таким образом, широкий максимум при 1123, 1103 (пл.) см⁻¹ (см. рис. 1) отнесен к валентным ассиметричным колебаниям групп с литературными данными [54, 55].

Таблица 1

ПАВ	ν_1, cm^{-1}	A_1	v ₂ , см ⁻¹	A_2	v ₃ , см ⁻¹	A_3	v ₄ , см ⁻¹	A_4	v_5 , cm^{-1}	A_5	$A_{ m cym}$	$n_{\rm COH}$: $n_{\rm COC}^*$	<i>P</i> (COC)**
AΦ ₉ -2	1041,7	2,89	1067,5	13,09	1111,5	8,29	1134,5	11,62			35,89	1:1	0,55
AΦ ₉ -3	1042,6	4,12	1066,8	11,86	1104,3	15,17	1131,5	18,08	1146,8	3,77	53,00	1:2	0,70
AΦ ₉ -4	1041,1	4,11	1066,4	12,50	1107,4	27,70	1131,9	20,22	1148,1	6,41	70,94	1:3	0,77
Triton N-42	1041,7	4,08	1066,4	11,60	1108,5	25,76	1132,4	19,38	1148,5	6,42	67,24	1:3	0,77
AΦ ₉ -5	1040,1	4,61	1065,9	13,14	1110,4	45,52	1131,0	14,24	1147,2	11,47	88,98	1:4	0,80
Brij-30	1048,0	10,40	1070,3	7,91	1107,4	36,84	1122,0	5,53	1140,6	27,84	88,52	1:4	0,79

Разложение полосы ν(OH) и δ(COH) в ИК-Фурье-спектрах оксиэтилированных ПАВ

* Число оксиртильных групп, не связанных с фенильным кольцом. ** P(COC) = (A + A + A)/A

** $P(\text{COC}) = (A_3 + A_4 + A_5)/A_{\text{сум}}.$

Описание спектров мицеллярных растворов Triton N-42 при солюбилизации воды. ИК спектры мицеллярных растворов Triton N-42 в зависимости от V_s/V_o представлены на рис. 2. При введении воды спектры претерпевают резкие изменения в области валентных и деформационных колебаний OH-групп (v(OH) и δ (COH), δ (H₂O)) и валентных колебаний v_{as}(COC) и практически не изменяются в других спектральных интервалах.

С увеличением содержания воды в мицеллярных растворах наблюдается плавное изменение формы полосы валентных колебаний v(OH), а именно: размытый максимум при 3477 см⁻¹ постепенно становится более резким и сдвигается в низкочастотную область до 3414 см⁻¹ при $V_s/V_o \ge 2,5$ об.% (см. рис. 2), при этом характер спектров в области v(OH) становится близок к спектру объемной воды. Наибольшие изменения происходят при малых добавках воды — до 1,0 об.% H₂O, в то время как при 2,0—3,5 об.% сдвиг полосы незначителен (см. рис. 2, вставка).

Полоса поглощения валентных колебаний оксиэтильной группы при 1250 см⁻¹, связанной с фенильным кольцом, не претерпевает каких-либо изменений при введении в систему воды. В области 1200—1000 см⁻¹ в спектре Triton N-42 наблюдается интенсивная сложная полоса с максимумами при 1123, 1103 (пл.) и 1068, 1039 (пл.), которая при введении в систему воды

Puc. 2. ИК-Фурье-спектры мицеллярных растворов Triton N-42 (после компенсации поглощения *н*-декана) и рассчитанная по ним зависимость максимума поглощения валентных колебаний v(OH) (на вставке) от солюбилизационной емкости мицеллярных растворов

Рис. 3. Разложение сложной полосы v(COC) и $\delta(COH)$ в ИК-Фурье-спектрах мицеллярных растворов Triton N-42 (после компенсации поглощения *н*-декана) на составляющие полосы по Гауссу: $a - 0; \ 6 - 3,5 \ of 5,\%$ воды

Таблица 2

Разложение полосы v	(OH) 1	u δ(COH)	в ИК-Фурье-спектрах	Triton N-42 в	условиях солюбилизации воды
---------------------	--------	----------	---------------------	---------------	-----------------------------

<i>V</i> _s / <i>V</i> _o , об.%	v_1 , cm^{-1}	A_1	v ₂ , см ⁻¹	A_2	v ₃ , см ⁻¹	A_3	v_4, cm^{-1}	A_4	v_5, cm^{-1}	A_5	$A_{\rm сум}$
0	1041 7	4 08	1066.4	11.60	1108 5	25 76	1132.4	10 38	1148 5	6.42	67 24
0.5	1039.8	3 78	1066.2	13 23	1103,5	25,70	1129.8	17,58	1146,3	0, 4 2 7 94	68 33
1.0	1039,0	3.88	1065.8	14.10	1103.1	27.74	1128,6	15.85	1145.1	8.71	70.28
1,5	1038,0	3,81	1065,6	14,67	1102,7	28,67	1126,4	11,50	1142,7	11,65	70,30
2,0	1038,0	3,85	1065,3	14,23	1102,3	29,07	1126,2	10,95	1142,6	11,00	69,10
2,5	1037,9	3,84	1065,3	14,46	1102,2	30,06	1125,7	9,58	1141,8	11,54	69,48
3,0	1038,1	3,63	1065,2	14,13	1101,9	30,18	1125,9	10,16	1142,0	11,06	69,16
3,5	1038,1	3,63	1065,0	13,54	1102,4	30,06	1125,7	8,72	1141,8	11,03	66,98

сильно изменяется по форме при незначительном изменении интегральной площади. На рис. З представлено разложение этой структурированной полосы на пять составляющих полос для "сухого" мицеллярного раствора и содержащего 3,5 об.% воды. Результаты разложения в зависимости от V_s/V_o приведены в табл. 2. Такие изменения формы полосы обусловлены, с одной стороны, сдвигом v₃, v₄ и v₅ на 6—7 см⁻¹ в низкочастотную область; с другой стороны, изменяется вклад полос в интегральную площадь при увеличении V_s/V_o . Доля полос v₃ и v₅ увеличивается за счет уменьшения вклада полосы v₄, в результате форма суммарной полосы становится более размытой. Такие изменения в спектре свидетельствуют о сильной гидратации оксиэтильных групп.

Структура воды в обратных мицеллах. Молекула Triton N-42 в полярной части содержит гидроксильную группу, которая в области валентных колебаний v(OH) спектроскопически неотличима от молекул воды. Для каждого спектра мицеллярного раствора, содержащего воду, компенсировали поглощение *н*-декана и молекул Triton N-42, как показано на рис. 4. Вычитание поглощения молекул Triton N-42 проводили по полосам фенильного кольца (1611 и 1580 см⁻¹) так, чтобы площади перекомпенсированной и недокомпенсированных частей спектра были равны. ИК спектры воды (3800—3000 см⁻¹), солюбилизированной в обратных мицеллах Triton N-42, представлены на рис. 5, *а*. Интегральная площадь $A_{\rm H_2O}$ валентных колебаний v(OH) мицеллярной воды линейно увеличивается с увеличением содержания воды ($A_{\rm H_2O} =$ $= 92,58 \cdot W$ или $A_{\rm H_2O} = 209,83 \cdot V_{\rm s}/V_{\rm o}$).

Широкие асимметричные полосы валентных колебаний мицеллярной воды (см. рис. 5, *a*) с центром при 3410 см⁻¹ имеют четко выраженные плечи при 3250 и 3520 см⁻¹, интенсивность поглощения которых одновременно увеличивается с ростом содержания воды. При высоких значениях солюбилизационной емкости максимум поглощения проявляется более четко, и форма v(OH) становится близкой к спектру объемной воды. Асимметричность и большая ширина полосы v(OH) (в том числе и объемной воды) связана с существованием различных ассоциатов молекул воды [19, 22, 32, 57].

Полосы v(OH) мицеллярной воды хорошо описываются суммой трех гауссовых кривых (см. рис. 5, б). Центры найденных полос для всех исследованных величин концентрации воды

Рис. 4. ИК-Фурье-спектры мицеллярных растворов: *1* — 0,25 моль/л Triton N-42 в *н*-декане, *2* — раствор *1*, содержащий 1,0 об.% H₂O, их разностный спектр *3* (вода, солюбилизированная в обратных мицеллах Triton N-42) получен вычитанием спектра *1* из спектра *2* по полосе фенильного кольца 1611 см⁻¹ с соответствующим коэффициентом

расположены при 3545 ± 12 , 3423 ± 10 и 3330 ± 20 см⁻¹ соответственно. Каждая компонента описывает определенный тип ассоциатов воды. Высокочастотная компонента 3545 ± 12 см⁻¹ относится к связанным водородной связью молекулам воды, которые проникают в поверхностный слой [23, 26, 27]. В нашем случае это молекулы воды, связанные с кислородными атомами оксиэтильных групп. Как было показано выше, оксиэтильные группы молекул Triton N-42, не связанные с фенильным кольцом, в отличие от фенокси-группы в значительной степени гидратированы. В спектре объемной воды [13, 15, 18, 29, 32] центр полосы v(OH) расположен вблизи 3400—3420 см⁻¹, поэтому средняя гауссова компонента при 3423 ± 10 см⁻¹ относится к свободной (объемной) воде, молекулы которой образуют между собой водородные связи, не взаимодействуя с полярными группами молекул Triton N-42 [23—27]. Низкочастотная компонента 3330 ± 20 см⁻¹ обусловлена колебаниями молекул воды, образующими H-связи с гидроксильной группой и с уже гидратированными кислородными атомами оксиэтильных групп, тем самым формируя второй гидратный слой оксиэтильных групп.

Таким образом, гидратация полярных групп молекул Triton N-42 проявляется в более сложной картине в области v(OH), где помимо поглощения объемной воды удалось выделить полосы, соответствующие ассоциатам воды, которая связанна с полярными группами молекул ПАВ. Гауссовы компоненты ассоциатов воды, связанной с гидроксильными и оксиэтильными группами, сдвигаются относительно пика, отнесенного к объемной воде, в противоположные стороны (см. рис. 5, δ).

Рис. 5. ИК-Фурье-спектры мицеллярной воды (*a*) в области 3800—3000 см⁻¹ в зависимости от солюбилизационной емкости: I = 0,5; 2 = 1,0; 3 = 1,5; 4 = 2,0; 5 = 2,5; 6 = 3,0; 7 = 3,5 об.% H₂O и разложение сложной полосы v(OH) (δ) в ИК-Фурье-спектрах мицеллярной воды (3,0 об.% H₂O) на составляющие полосы по Гауссу

Распределение молекул воды (на одну молекулу Triton N-42)									
$V_{\rm s}/V_{\rm o},$	W	Wr	W						
об.%	W	W(COH)	W(COC)	w _{об}					
0,5	1,1	0,7	0,3	0,1					
1,0	2,2	1,3	0,6	0,3					
1,5	3,4	1,9	1,0	0,5					
2,0	4,5	2,5	1,0	1,0					
2,5	5,6	3,0	1,4	1,2					
3,0	6,8	3,4	1,6	1,8					
35	8.0	42	16	22					

Таблица 3

Рис. 6. Распределение воды по видам *P_i* в зависимости от солюбилизационной емкости: *1* — объемная вода; *2* — вода, связанная с оксиэтильными группами; *3* — вода, связанная с гидроксильными группами и вторично связанная с оксиэтильными группами; *4* — гидратная вода (включает в себя *2* и *3*)

Доля воды каждого вида в зависимости от солюбилизационной емкости приведена на рис. 6. Уже при низких солюбилизационных емкостях в обратных мицеллах присутствует объемная вода, доля которой монотонно увеличивается от 13 до 27 % при увеличении солюбилизационной емкости от 0,5 до 3,5 об.% (W = 1, 1 - 8, 0). Доли воды, связанной с оксиэтильными и гидроксильными группами, при этом уменьшаются.

В состав гидратной воды входит вода, связанная с оксиэтильными и гидроксильными группами молекул ПАВ, поэтому можно легко рассчитать зависимость количества гидратной воды от общего содержания воды (табл. 3). С увеличением содержания воды $W_{\rm гидр}$ монотонно увеличивается и достигает максимального значения $W_{\rm гидр} = 5,8$ при предельно возможном значении $V_{\rm s}/V_{\rm o} = 3,5$ об.% (W = 8,0). Таким образом, полярная группа молекулы Triton N-42 может быть гидратирована примерно шестью молекулами H₂O. Отметим, что на гидратацию молекул оксиэтилированных ПАВ идет намного больше молекул воды, чем на формирование объемной воды. Для анионного ПАВ NaAOT $W_{\rm гидр}$ при W = 10,0 составила 4,9 [27]. Таким образом, по сравнению с гидратацией молекул ионных ПАВ в обратных мицеллах оксиэтилированных ПАВ большая часть молекул воды идет на гидратацию полярных групп.

ЗАКЛЮЧЕНИЕ

Разработана и применена методика исследования распределения объемной и гидратной воды в обратных мицеллах Triton N-42 в условиях инъекционной солюбилизации воды. Проведено разложение полосы валентных колебаний v(OH) на составляющие полосы, и выделено три вида ассоциатов воды: вода, первично связанная с оксиэтильными группами ($3545 \pm 12 \text{ см}^{-1}$), объемная вода ($3423 \pm 10 \text{ см}^{-1}$) и вода, связанная с гидроксильными группами и вторично связанная с оксиэтильными группами ($3330 \pm 20 \text{ см}^{-1}$). Показано, что в обратных мицеллах оксиэтилированных ПАВ большая часть солюбилизированной воды участвует в гидратации полярных групп молекул ПАВ.

Данная работа является только первым этапом в исследовании мицеллярной структуры с использованием метода ИК спектроскопии. Цель дальнейших исследований заключается в изучении распределения воды в условиях инъекционной солюбилизации солянокислых растворов и при экстракционной солюбилизации кислотно-солевых растворов. Результаты, полученные методом ИК спектроскопии, будут сопоставлены со структурными параметрами обратных мицелл Triton N-42, полученными с использованием методов динамического и статического рассеяния света.

Авторы выражают благодарность Н.И. Алферовой за съемку ИК спектров.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (код проекта 05-03-32308).

СПИСОК ЛИТЕРАТУРЫ

- 1. Lombardo R., Sbriziolo C., Turco Liveri M.L. // Colloids and Surfaces. A. 2006. 273, N 1-3. P. 1 9.
- Sarkar D., Subbarao P.V., Begum G., Ramakrishna K. // J. Colloid Interface Sci. 2005. 288, N 2. P. 591 – 596.
- 3. López-Quintela M. A., Tojo C., Blanco M. C. et al. // Current Opinion in Colloid Interface Sci. 2004. 9, N 3-4. P. 264 278.
- 4. Chiang Ch.-L., Hsu M.-B., Lai L.-B. // J. Solid State Chem. 2004. 177, N 11. P. 3891 3895.
- 5. Татарчук А.И., Булавченко А.И. // Журн. неорган. химии. 2004. 49, № 8. С. 1225 1231.
- 6. Bulavchenko A.I., Podlipskaya T.Yu., Batishcheva E.K., Torgov V.G. // Analyst. 1997. 122, N 3. P. 227 232.
- 7. Bulavchenko A.I., Podlipskaya T.Yu., Batishcheva E.K., Torgov V.G. // J. Phys. Chem. B. 2000. 104, N 20. P. 4821 4826.
- Булавченко А.И., Татарчук А.И., Булавченко О.А., Арымбаева А.Т. // Журн. неорган. химии. 2005. 50, № 5. – С. 862 – 866.
- 9. Vijayalakshmi C.S., Gulari E. // Sep. Sci. Technol. 1992. 27, N 2. P. 173 198.
- 10. Leodidis E.B., Hatton T.A. // Langmuir. 1989. 5, N 3. P. 741 753.
- 11. Hasegawa M., Sugimura T., Suzaki Y. et al. // J. Phys. Chem. 1994. 98, N 8. P. 2120 2124.
- Altamirano M.S., Borsarelli C.D., Cosa J.J., Previtali C.M. // J. Colloid Interface Sci. 1998. 205, N 2. P. 390 – 396.
- 13. Bey Temsamani M., Maeck M., El Hassani I., Hurwitz H.D. // J. Phys. Chem. B. 1998. 102, N 18. P. 3335 3340.
- 14. Giammona G., Goffredi F., Turco Liveri V., Vassallo G. // J. Colloid Interface Sci. 1992. 154, N 2. P. 411 415.
- 15. Freda M., Onori G., Paciaroni A., Santucci A. // J. Mol. Liq. 2002. 101, N 1-3. P. 55 68.
- 16. Li Q., Weng S., Wu J., Zhou N. // J. Phys. Chem. B. 1998. 102, N 17. P. 3168 3174.
- 17. Li. Q., Li T., Wu J. // Ibid. 2000. 104, N 38. P. 9011 9016.
- 18. MacDonald H., Bedwell B., Gulari E. // Langmuir. 1986. 2, N 6. P. 704 708.
- 19. Jain T.K., Varshney M., Maitra A. // J. Phys. Chem. 1989. 93, N 21. P. 7409 7416.
- 20. González-Blanco C., Rodríguez L.J., Velázquez M.M. // J. Colloid Interface Sci. 1999. 211, N 2. P. 380 386.
- 21. González-Blanco C., Rodríguez L.J., Velázquez M.M. // Langmuir. 1997. 13, N 7. P. 1938 1945.
- 22. Boissiere C., Brubach J.B., Mermet A. et al. // J. Phys. Chem. B. 2002. 106, N 5. P. 1032 1035.
- 23. Li Q., Li T., Wu J., Zhou N. // J. Colloid Interface Sci. 2000. 229, N 1. P. 298 302.
- 24. Zhou N., Li Q., Wu J. et al. // Langmuir. 2001. 17, N 15. P. 4505 4509.
- 25. Neuman R.D., Park S.J. // J. Colloid Interface Sci. 1992. 152, N 1. P. 41 53.
- 26. Yuan S.-L., Zhou G.-W., Xu G.-Y, Li G.-Z. // J. Dispers. Sci. Technol. 2004. 25, N 6. P. 733 739.
- 27. Zhou G.-W., Li G.-Z., Chen W.-J. // Langmuir. 2002. 18, N 12. P. 4566 4571.
- 28. Guo Ch., Liu H.-Zh., Chen J.-Y. // Colloids and Surfaces A. 2000. 175, N 1-2. P. 193 202.
- 29. Di Profio P., Germani R., Onori G. et al. // Langmuir. 1998. 14, N 4. P. 768 772.
- 30. Brubach J.-B., Mermet A., Filabozzi A. et al. // J. Phys. Chem. B. 2001. 105, N 2. P. 430 435.
- 31. D'Angelo M., Onori G., Santucci A. // J. Phys. Chem. 1994. 98, N 12. P. 3189 3193.
- 32. Onori G., Santucci A. // Ibid. 1993. 97, N 20. P. 5430 5434.
- 33. Wong M., Thomas J.K., Nowak T. // J. Amer. Chem. Soc. 1977. 99, N 14. P. 4730 4736
- 34. Novaki L.P., Pires P.A.R., El Seoud O.A. // Colloid Polym. Sci. 2000. 278, N 2. P. 143 149.
- 35. Yushmanov V.E., Tabak M. // J. Colloid Interface Sci. 1997. 191, N 2. P. 384 390.
- Vasilescu M., Caragheorgheopol A., Caldararu H. // Adv. Colloid Interface Sci. 2001. 89—90. P. 169 194.
- 37. *Caragheorgheopol A., Bandula R., Caldararu H. Joela H. //* J. Mol. Liquids. 1997. **72**, N 1—3. P. 105 119.
- 38. Qi L., Ma J. // J. Colloid Interface Sci. 1998. 197, N 1. P. 36 42
- 39. Bandula R., Vasilescu M., Lemmetyinen H. // Ibid. 2005. 287, N 2. P. 671 677.
- 40. Hof M., Lianos P., Laschewsky A. // Langmuir. 1997. 13, N 8. P. 2181 2183.
- 41. Krishnamoorthy G., Dogra S.K. // Spectrochimica Acta Part A. 2001. 57, N 13. P. 2617 2628.
- 42. De S., Girigoswami A. // J. Colloid Interface Sci. 2004. 271, N 2. P. 485 495.
- 43. De S., Girigoswami A., Mandal A.K. // Spectrochim. Acta, Part. A. 2003. 59, N 11. P. 2487 2496.
- 44. Zhu D.-M, Wu X., Schelly Z.A. // Langmuir. 1992. 8, N 6. P. 1538 1540.
- 45. Velázquez M.M., Valero M., Orgeta F. // J. Phys. Chem. B. 2001. 105, N 42. P. 10163 10168.

- 46. Steytler D.C., Jenta T.R., Robinson B.H. et al. // Langmuir. 1996. 12, N 6. P. 1483 1489.
- 47. Amararene A., Gindre M., Le Huérou J.-Y. et al. // Phys. Rev. E. 2000. 61, N 1. P. 682 689.
- 48. Sheh X., Gao H., Wang X. // Phys. Chem. Chem. Phys. 1999. 1, N 3. P. 485 495.
- 49. Hauser H., Haering G., Pande A., Luisi P.L. // J. Phys. Chem. 1989. 93, N 23. P. 7869 7876.
- 50. Haandrikman G., Daane G.J.R., Herkhof F.J.M. et al. // Ibid. 1992. 96, N 22. P. 9061 9068.
- 51. Булавченко А.И., Батищева Е.К., Подлипская Т.Ю., Торгов В.Г. // Коллоидн. журн. 1998. **60**, № 2. С. 173 181.
- 52. Булавченко А.И., Подлипская Т.Ю., Торгов В.Г. // Журн. физ. химии. 2004. **78**, № 12. С. 2258 2263.
- 53. Булавченко А.И., Подлипская Т.Ю., Арымбаева А.Т. // Там же. 2005. 79, № 5. С. 904 909.
- 54. Беллами Л. Инфракрасные спектры молекул. М.: Изд-во иностр. лит., 1957.
- 55. Купцов А.Х., Жижин Г.Н. Фурье ИК-КР и Фурье-ИК спектры полимеров. М.: Физматмет., 2001.
- 56. Земскова С.М., Охонская Ю.Н., Савинцева С.А., Корецкий А.Ф. // Изв. СО АН СССР. Сер. хим. наук. 1985. № 8. С. 110 114.
- 57. *Карякин А.В., Кривенцова Г.А.* Состояние воды в органических и неорганических соединениях. М.: Наука, 1973.