УДК 539.375 DOI: 10.15372/PMTF202315316

ВЛИЯНИЕ ТИПА ПЛОСКОЙ ЗАДАЧИ ДЛЯ ТОНКОГО УПРУГОПЛАСТИЧЕСКОГО АДГЕЗИОННОГО СЛОЯ НА ЗНАЧЕНИЕ *J*-ИНТЕГРАЛА

В. Э. Богачева, В. В. Глаголев, Л. В. Глаголев, А. А. Маркин

Тульский государственный университет, Тула, Россия E-mails: v.boga4eva2014@yandex.ru, vadim@tsu.tula.ru, len4ic92@gmail.com, markin-nikram@yandex.ru

Рассматривается деформация идеально упругопластического адгезионного слоя образца в виде упругой двухконсольной балки. С учетом всех диагональных компонент тензора напряжений в слое найдены значения *J*-интеграла для ряда адгезивов. Показано, что при использовании упругопластической модели деформирования слоя тип плоской задачи может оказывать существенное влияние на значение *J*-интеграла. Показано, что при нормальном отрыве в зоне необратимых деформаций адгезива в плоском напряженном состоянии возможно наличие сжимающих напряжений.

Ключевые слова: адгезив, упругопластическое деформирование, линейный параметр, *J*-интеграл

Введение. Для нахождения критических значений *J*-интегралов адгезионных слоев используется формула податливости Ирвина [1, 2]. При этом в качестве образца выбирается двухконсольная балка (ДКБ-образец), в которой часть консолей соединены адгезивом, а зона разрыва связей представляется в виде трещиноподобного дефекта (рис. 1). Предполагается, что внешняя силовая нагрузка F равномерно распределена по торцам консолей с интенсивностью Q = F/b. Считаем, что рассматриваемая нагрузка приводит к однородному распределению векторов напряжений P = F/(hb) на левых торцах консолей.

При изучении линейно-упругой модели поведения консолей 1 и 2 без учета толщины слоя δ_0 , пренебрежимо малой по сравнению с высотой консолей h в плоскости x_1Ox_2 , получаем модель распространения трещины в виде математического разреза при жестком сцеплении консолей с адгезионным слоем. В этом случае *J*-интеграл зависит от коэффициента интенсивности напряжений. Поскольку коэффициент интенсивности не зависит от типа плоской задачи, значение *J*-интеграла в случае плоского деформирования отличается от его значения в случае плоского напряженного состояния на величину $1 - \nu^2$, где ν — коэффициент Пуассона поврежденного тела. В образце (см. рис. 1) на поверхностях $x_3 = 0$ и $x_3 = -b$ реализуется состояние, близкое к плоскому напряженному, а во внутренних сечениях образца, близких к его середине $x_3 = -b/2$, состояние соответствует плоской деформации при достаточно большой ширине b. Получаемое в результате эксперимента значение *J*-интеграла ассоциируется с потоком упругой энергии в вершину трещины в условиях плоской деформации, так как деформация консолей рассматривается в рамках

Работа выполнена при финансовой поддержке Российского научного фонда (код проекта 23-21-00017).

[©] Богачева В. Э., Глаголев В. В., Глаголев Л. В., Маркин А. А., 2023

Рис. 1. Схема нагружения ДКБ-образца: 1 — консоль 1, 2 — консоль 2, 3 — слой адгезива

балочной теории и коэффициент Пуассона полагается равным нулю. Заметим, что погрешность измерений в эксперименте для сжимаемых материалов соответствует погрешности, вносимой величиной $1 - \nu^2$.

Адгезионные слои могут деформироваться пластически [3]. Поскольку пределы текучести адгезивов значительно меньше пределов текучести сопрягаемых с ними материалов, исследование влияния локальных областей диссипации в пределах адгезионного слоя на *J*интеграл является актуальной задачей.

В механике разрушения широко используется модель Леонова — Панасюка — Дагдейла [4, 5]. В этом случае при растяжении пластин с трещиной в виде математического разреза на продолжении трещины реализуется напряженное состояние с одной положительной компонентой тензора напряжений в направлении отрыва, равной пределу текучести материала. Существование тонких зон необратимых деформаций наблюдалось в эксперименте в случае состояния материала, близкого к плоскому напряженному. Данное представление используется в различных моделях, описывающих зоны предразрушения. В тонкой зоне пластического деформирования отсутствует жесткое сцепление поврежденного материала до достижения точки, в которой он переходит в упругое состояние. В зависимости от суммарного коэффициента интенсивности в этой точке возможно как конечное [4–6], так и сингулярное [7–10] напряженное состояние. В работе [11] при описании зоны предразрушения были исследованы конечное и сингулярное напряженные состояния при положительном и нулевом суммарном коэффициенте интенсивности напряжений.

При решении задачи о нормальном отрыве адгезива будем предполагать, что напряженно-деформированное состояние адгезионного слоя описывается соотношениями для средних по его толщине характеристик [12, 13]. При этом учитываются напряжения как в направлении отрыва, так и в ортогональных ему направлениях. Толщина слоя рассматривается в качестве линейного параметра, при стремлении которого к нулю получается значение *J*-интеграла для упругого материала [14]. При использовании линейно-упругой модели поведения адгезионного слоя и консолей коэффициент Пуассона адгезионного слоя, модуль упругости которого значительно меньше модуля упругости сопрягаемого материала, не влияет на значение *J*-интеграла [15]. Таким образом, в рассматриваемой плоской задаче для консолей образца значение *J*-интеграла не зависит от ее типа. Данное значение будем называть эталонным.

В работе [16] проанализировано конечно-элементное решение задачи о предельном состоянии адгезионного слоя в ДКБ-образце в случае плоского деформированного состояния при упругопластическом поведении материала слоя. Показано, что, несмотря на наличие зон пластичности в предельно тонких адгезионных упругопластических слоях, значение *J*-интеграла практически совпадает с полученным в расчете при обратимых деформациях и соответствует результату расчета с использованием коэффициента интенсивности напряжений. Это объясняется увеличением гидростатического напряжения, обусловленным увеличением всех диагональных компонент тензора напряжений в слое. Заметим, что в случае плоского напряженного состояния слоя компонента тензора напряжения, действующая в направлении оси Ox_3 (см. рис. 1), в процессе деформирования остается постоянной и принимает нулевое значение.

В данной работе при заданной предельной внешней нагрузке строится решение упругопластической задачи для предельно тонких, но имеющих конечную толщину слоев адгезива в плоском напряженном состоянии. Полученное решение сравнивается с критическими значениями *J*-интеграла, вычисленными для модели трещины в виде математического разреза через коэффициент интенсивности напряжений. На основе данного решения можно определить значения *J*-интеграла с учетом диссипации энергии при уменьшении линейного параметра для адгезионных слоев с различными упругопластическими свойствами.

1. Постановка задачи. Рассмотрим сечение образца, показанного на рис. 1, плоскостью x_1Ox_2 . Считаем, что консоли 1 и 2 имеют одинаковые геометрические и механические характеристики. Область возможного пластического деформирования слоя имеет длину l_p , а консоли деформируются упруго. Рассматривается поведение консолей в состоянии плоской деформации. Предполагаем, что $h \ll l$ и условие жесткой заделки правого торца не оказывает влияния на распределение напряжений в вершине трещиноподобного дефекта.

Модуль интенсивности критической нагрузки для слоя нулевой толщины при жестком сцеплении консолей 1 и 2 на участке длиной *l* вычисляется по формуле [17]

$$Q_c = \sqrt{\frac{G_{\rm Ic}hE}{12(1-\nu^2)}} \left(\frac{a}{h} \left(1+0.673\frac{h}{a}\right)\right)^{-1},\tag{1}$$

где E — модуль упругости консоли; ν — коэффициент Пуассона консоли; h — высота консоли; a — длина трещины; G_{Ic} — критическое значение J-интеграла при нагружении по моде I в состоянии плоской деформации.

Критическую распределенную нагрузку на левом торце консоли определим в виде $P = Q_c/h$. Поскольку при линейно-упругом поведении слоя адгезива малой, но конечной толщины [15] значение *J*-интеграла для любого типа плоской задачи определяется деформацией консолей ДКБ-образца, найденную распределенную нагрузку будем использовать при учете упругопластических свойств адгезива в плоском напряженном состоянии.

В силу симметрии образца и внешней нагрузки решение задачи строим для консоли 1, используя вариационное уравнение [13, 16]

$$\int_{S_1} \boldsymbol{\sigma} : \delta \varepsilon \, ds + \int_l \bar{\boldsymbol{\sigma}}_{22} \, \delta u_2^+ \, dx_1 + 0, \\ 5\delta_0 \int_l \bar{\boldsymbol{\sigma}}_{11} \, \frac{\partial \, \delta u_1^+}{\partial x_1} \, dx_1 = \int_{L_1} \boldsymbol{P} \cdot \delta \boldsymbol{u} \, dl, \tag{2}$$

где u — векторное поле перемещений консоли 1; σ , ε — тензоры напряжений и деформаций; S_1 — площадь сечения консоли 1 плоскостью x_1Ox_2 ; L_1 — контур, ограничивающий площадь S_1 ; $\bar{\sigma}$, $\bar{\varepsilon}$ — тензоры средних напряжений и деформаций слоя; u_1^+ , u_2^+ — компоненты вектора перемещений верхней границы слоя длиной l; P — внешняя нагрузка. Рассматривается случай жесткого сцепления консоли 1 и слоя. Средние деформации слоя определяются через его граничные перемещения следующим образом:

$$\bar{\varepsilon}_{11}(x_1) = \frac{du_1^+(x_1)}{dx_1}, \qquad \bar{\varepsilon}_{22}(x_1) = \frac{2u_2^+(x_1)}{\delta_0}.$$
(3)

В уравнении (2) учтено, что в слое средние касательные напряжения равны нулю. Материал консоли 1 считаем линейно-упругим, а материал адгезионного слоя рассматриваем в рамках деформационной теории пластичности [18]. Условием пластичности считаем достижение критического значения интенсивности касательных напряжений. Поведение материала слоя на стадии упругопластического деформирования рассматриваем при постоянном значении интенсивности напряжений:

$$T_p = \sqrt{(\bar{\sigma}_{11} - \bar{\sigma}_{22})^2 + (\bar{\sigma}_{22})^2 + (\bar{\sigma}_{11})^2} / \sqrt{6} = \text{const}.$$
 (4)

Значение постоянной в (4) определяет предел текучести по интенсивности напряжений. Соответствующий предел текучести может быть определен через предел текучести при одноосном растяжении $T_p = \sigma_0/\sqrt{3}$, где σ_0 — предел текучести материала слоя при одноосном растяжении, в случае когда имеет место только одно главное напряжение. Задача, включающая уравнение (2), определяющие соотношения и граничные условия, является замкнутой. Для ее решения используем метод конечных элементов с квадратичной аппроксимацией смещений в сочетании с методом упругих решений Ильюшина [18]. Постановка и метод решения этой задачи приведены в работе [19].

Значение *J*-интеграла определяем по средним характеристикам напряженнодеформированного состояния слоя согласно формуле [16]

$$J = \delta_0 \Big[\bar{\sigma}_{11} \bar{\varepsilon}_{11} \big|_{x_1=0} + 0.5 (\bar{\sigma}_{22} \bar{\varepsilon}_{22} - \bar{\sigma}_{11} \bar{\varepsilon}_{11}) \big|_{x_1=l_p} - \int_0^{l_p} \Big(\bar{\sigma}_{22} \frac{\partial \bar{\varepsilon}_{22}}{\partial x_1} - \frac{\partial \bar{\sigma}_{11}}{\partial x_1} \bar{\varepsilon}_{11} \Big) \, dx_1 \Big], \tag{5}$$

где l_p — длина области пластического деформирования. В предположении равенства нулю осевых напряжений в слое из (3)–(5) при $\delta_0 \to 0$ получаем классическое выражение для *J*-интеграла в модели Леонова — Панасюка — Дагдейла $J = 2\sigma_0 u_2^+|_{x_1=0}$. Заметим, что в данной модели критическое перемещение, по сути, является критериальной характеристикой, обусловленной конечностью поля напряжений вследствие обращения в нуль суммы внешних и внутренних коэффициентов интенсивности напряжений. В рассматриваемом подходе перемещение в вершине трещиноподобного дефекта является следствием деформации адгезионного слоя конечной толщины δ_0 . Рассматривая деформацию [20] и *J*-интеграл при критической внешней нагрузке в качестве прочностной характеристики материала, можно определить значение линейного параметра, соответствующего рассматриваемому масштабному уровню.

2. Результаты решения. Следуя работе [3], рассмотрим ДКБ-образец с консолями из стали марки С45Е с модулем упругости E = 200 ГПа, коэффициентом Пуассона $\nu = 0.25$ и адгезионными слоями, характеристики которых приведены в табл. 1 (σ_c — предел прочности; ε_c — предельная деформация). Предельные характеристики напряженнодеформированного состояния приведены для случая одноосного растяжения. Геометрические характеристики образца [3] имели следующие значения: a = 0.055 м, h = 0.0127 м, l = 0.245 м.

На рис. 2, *а* приведено распределение напряжений в слое адгезива Araldite AV138 для расчетной нагрузки (1) при различных значениях толщины слоя.

На рис. 2, *б* показаны аналогичные распределения напряжения в слое адгезива Sikaforce 7752 при указанных выше значениях линейного параметра. На рис. 2 выделены области

Таблица 1

Адгезив	E, ГПа	ν	$ σ_0, MΠa $	$ σ_c, MΠa $	$\varepsilon_c, \%$	$G_{\mathrm{I}c},\mathrm{H/M}$
Araldite AV138	4,90	0,35	36,49	39,45	1,21	200
Araldite 2015	1,85	0,33	12,63	21,63	4,77	430
Sikaforce 7752	0.49	0.30	3.24	11.48	19.18	2360

Механические характеристики адгезивов

пластических деформаций при рассмотренных значениях линейного параметра δ_0 . Длина l'_p соответствует значению $\delta_0 = 10^{-3}$ м, а длина l''_p — значению $\delta_0 = 10^{-5}$ м.

На рис. 2, *а* видно, что при рассматриваемых значениях линейного параметра в зоне пластических деформаций имеют место только растягивающие напряжения. Для адгезива Sikaforce 7752 (см. рис. 2, δ) в области пластических деформаций образуется область сжимающих напряжений. При этом в силу наличия напряжения $\bar{\sigma}_{11}$ в слое напряжение $\bar{\sigma}_{22}$ в концевой зоне слоя может быть как меньше (см. рис. 2, *a*), так и больше (см. рис. 2, δ) значения предела текучести при одноосном растяжении (см. табл. 1). Это обусловлено двух осным напряженным состоянием слоя. Заметим, что между областями сжимающих и растягивающих напряжений отсутствует промежуточная область обратимых деформаций, имеющая место в случае плоской деформации [16].

Представим длину пластической области в виде суммы двух слагаемых: $l_p = l_1 + l_2$, где l_1 — длина области с растягивающими напряжениями; l_2 — длина области со сжимающими напряжениями. Вклад сжимающих напряжений в величину *J*-интеграла (5) обозначим следующим образом:

$$I^{-} = -\delta_0 \int_{l_1}^{l_p} \left(\bar{\sigma}_{22} \frac{\partial \bar{\varepsilon}_{22}}{\partial x_1} - \frac{\partial \bar{\sigma}_{11}}{\partial x_1} \bar{\varepsilon}_{11} \right) dx_1.$$

таолица д	Т	аб	л	и	ц	a	2
-----------	---	----	---	---	---	---	---

δ_0 , м	$l_1,$ м	<i>l</i> ₂ , м	l_p , м	J, H/M	$I^-, \mathrm{H/M}$	$\bar{\varepsilon}_{22} _{x_1=0}$
10^{-3}	0,003	0	0,003	221	0	$0,\!01$
10^{-4}	0,006	0	0,006	220	0	$0,\!08$
10^{-5}	0,007	0	0,007	220	0	0,75
10^{-6}	0,007	0	0,007	221	0	$7,\!47$

Таблица 3

Критические параметры адгезива Araldite 2015

δ_0 , м	$l_1,$ м	$l_2, {\rm M}$	l_p , м	J, H/M	$I^-, \mathrm{H/M}$	$\bar{\varepsilon}_{22} _{x_1=0}$
10^{-3}	0,009	0	0,009	482	0	$0,\!03$
10^{-4}	0,014	0	0,014	472	0	$0,\!28$
10^{-5}	0,016	0,002	0,018	474	$1,\!15$	2,73
10^{-6}	0,016	0,004	0,020	473	-0,07	$27,\!42$

Таблица 4

Критические параметры адгезива Sikaforce 7752

δ ₀ , м	$l_1,$ м	l_2 , м	l_p , м	J, H/M	$I^-, \mathrm{H/M}$	$\bar{\varepsilon}_{22} _{x_1=0}$
10^{-3}	0,092	$0,\!053$	$0,\!145$	9300	-19,90	2,3
10^{-4}	0,093	0,061	$0,\!154$	8911	-1,50	23,1
10^{-5}	0,093	0,063	$0,\!156$	8922	3,70	231,2
10^{-6}	0,094	0,063	$0,\!157$	8931	0,08	2325,7

В табл. 2–4 приведены результаты расчета критических параметров адгезионных слоев с механическими характеристиками, представленными в табл. 1, под действием нагрузки (1).

Для адгезионных слоев Araldite AV138 и Araldite 2015 результаты расчета критического значения *J*-интеграла (см. табл. 2, 3) различаются на величину порядка 10 % эталонного значения (см. табл. 1). Использование модели упругого деформирования адгезива Araldite AV138 [16] приводит к различию значений *J*-интеграла на 5 %. В данном случае можно вычислить значение *J*-интеграла без учета упругопластических характеристик адгезива.

Наиболее существенное отличие от эталонного значения при расчете *J*-интеграла наблюдается для смолы Sikaforce 7752 (см. табл. 4). В работе [16] в случае упругопластического деформирования образца с учетом плоской деформации слоя смолы Sikaforce 7752 значение *J*-интеграла при $\delta_0 = 10^{-6}$ м составило 2417 H/м, что соответствует решению задачи в случае упругого поведения адгезива (смолы). Данный результат обусловлен увеличением гидростатической составляющей тензора напряжений в случае учета всех диагональных компонент в слое для рассматриваемого типа плоской задачи при упругопластическом поведении адгезива. В случае плоского напряженного состояния слоя при его упругопластическом деформировании гидростатическое давление постоянно, что приводит к существенному увеличению длины зоны пластической деформации по сравнению с длиной этой зоны в условиях плоской деформации [16]. Для условий плоской деформации слоя при стремлении его толщины к нулю длина зоны пластичности практически равна нулю, а в случае плоского напряженного состояния с длиной области сопряжения консолей. В работе [3] при обработке экспериментальных данных рассматриваемого ДКБ-образца методом CBBM (compliance-based beam method) расчетное значение потока упругой энергии составило $G_{Ic} = 4508$ H/м, что практически в два раза больше значения, приведенного в табл. 1, и в два раза меньше по сравнению с расчетным значением, указанным в табл. 4, при минимальном значении $\delta_0 = 10^{-6}$ м. Таким образом, при выраженных пластических свойствах адгезива размер *b* экспериментального образца (см. рис. 1) может оказывать существенное влияние на распределение значений *J*-интегралов по сечениям образца плоскостями $x_3 = x \in [0; -b]$, если считать, что в среднем сечении состояние близко к плоскому деформированному, а в крайних — к плоскому напряженному.

Из табл. 2–4 следует, что при значении линейного параметра $\delta_0 \leq 10^{-4}$ м наблюдаются стабилизация значений *J*-интеграла и увеличение деформаций в вершине трещиноподобного дефекта. Результаты сравнения значений критических деформаций, приведенных в табл. 1, показывают, что предельные значения линейного параметра находятся в диапазоне $\delta_0 = 10^{-3} \div 10^{-4}$ м.

Несмотря на наличие сжимающих напряжений на пластическом участке деформирования адгезива, согласно данным табл. 3, 4 их учет не является принципиальным при вычислении значения *J*-интеграла.

Заключение. Рассмотрено упругопластическое деформирование упругими консолями адгезива в виде тонкого слоя с однородными по толщине напряжениями. Использование толщины слоя в качестве линейного параметра позволяет рассматривать предельно тонкие слои с реальными механическими свойствами. Тип плоской задачи о деформировании адгезионного слоя, состояние которого определяется диагональными компонентами тензора напряжений, необходимо учитывать при вычислении критического значения *J*-интеграла в случае выраженных пластических свойств адгезива. При нормальном отрыве в условиях плоского напряженного состояния в зоне пластического деформирования слоя возможно образование областей сжимающих напряжений, учет которых не оказывает существенного влияния на значение *J*-интеграла.

ЛИТЕРАТУРА

- Irwin G. R., Kies J. A. Critical energy rate analysis of fracture strength // Welding J. Res. Suppl. 1954. V. 33. P. 193–198.
- 2. **Пестриков В. М.** Механика разрушения: Курс лекций / В. М. Пестриков, Е. М. Морозов. СПб.: Центр образоват. программ "Профессия", 2012.
- Lopes R. M., Campilho R. D. S. G., da Silva F. J. G., Faneco T. M. S. Comparative evaluation of the Double-Cantilever Beam and Tapered Double-Cantilever Beam tests for estimation of the tensile fracture toughness of adhesive joints // Intern. J. Adhes. Adhes. 2016. V. 67. P. 103–111.
- Dugdale D. S. Yielding of steel sheets containing slits // J. Mech. Phys. Solids. 1960. V. 8, N 2. P. 100–104.
- 5. **Леонов М. Я., Панасюк В. В.** Развитие мельчайших трещин в твердом теле // Прикл. механика. 1959. Т. 5, № 4. С. 391–401.
- Баренблатт Г. И. Математическая теория равновесных трещин, образующихся при хрупком разрушении // ПМТФ. 1961. № 4. С. 3–56.
- Rose L. R. F. Crack reinforcement by distributed springs // J. Mech. Phys. Solids. 1987. V. 35. P. 383–405.
- Budiansky B., Amazigo J. C., Evans A. G. Small-scale crack bridging and the fracture toughness of particulate-reinforced ceramics // J. Mech. Phys. Solids. 1988. V. 36. P. 167–187.

- Кадиев Р. И., Мирсалимов В. М. Торможение трещины со связями между берегами с помощью наведенного термоупругого поля напряжений // ПМТФ. 2005. Т. 46, № 1. С. 133– 143.
- 10. Гольдштейн Р. В., Перельмутер М. Н. Моделирование трещиностойкости композиционных материалов // Вычисл. механика сплош. сред. 2009. Т. 2, № 2. С. 22–39.
- Кургузов В. Д., Корнев В. М. Построение диаграмм квазихрупкого и квазивязкого разрушения материалов на основе необходимых и достаточных критериев // ПМТФ. 2013. Т. 54, № 1. С. 179–194.
- Макклинток Ф. Пластические аспекты разрушения // Разрушение. Т. 3. М.: Мир, 1975. С. 67–262.
- Glagolev V. V., Markin A. A. Fracture models for solid bodies, based on a linear scale parameter // Intern. J. Solids Structures. 2019. V. 158. P. 141–149.
- 14. Berto F., Glagolev V. V., Markin A. A. Relationship between J_c and the dissipation energy in the adhesive layer of a layered composite // Intern. J. Fracture. 2020. V. 224, N 2. P. 277–284.
- 15. Богачева В. Э., Глаголев В. В., Глаголев Л. В., Маркин А. А. О влиянии механических характеристик тонкого адгезионного слоя на прочность композита. Ч. 1. Упругое деформирование // Вестн. Перм. нац. исслед. политехн. ун-та. Механика. 2022. № 3. С. 116–124.
- 16. Богачева В. Э., Глаголев В. В., Глаголев Л. В., Маркин А. А. Влияние пластических свойств тонкого адгезионного слоя на распределение зон пластичности и значения *J*-интеграла в состоянии плоской деформации // Механика композиц. материалов и конструкций. 2023. Т. 29, № 1. С. 115–131.
- Andrews M. G., Massabo R. The effects of shear and near tip deformations on energy release rate and mode mixity of edge-cracked orthotropic layers // Engng Fracture Mech. 2007. V. 74. P. 2700–2720.
- 18. **Ильюшин А. А.** Пластичность. Ч. 1. Упругопластические деформации. М.; Л.: Гостехтеоретиздат, 1948.
- 19. Глаголев В. В., Глаголев Л. В., Маркин А. А. Определение напряженно-деформированного состояния упругопластических тел с боковым трещиноподобным дефектом с использованием модели с линейным размером // ПМТФ. 2018. Т. 59, № 6. С. 143–154.
- 20. Махутов Н. А. Деформационные критерии разрушения и расчет элементов конструкций на прочность. М.: Машиностроение, 1981.

Поступила в редакцию 29/V 2023 г., после доработки — 9/VI 2023 г. Принята к публикации 26/VI 2023 г.