УДК 539.533; 534.16

НЕРАЗРУШАЮЩИЙ МЕТОД ОЦЕНКИ СОДЕРЖАНИЯ УГЛЕРОДА В СТАЛИ

А. Бадиди Буда, Х. Бельхельфа, В. Джерир, Р. Халими

Центр научных исследований и технологий сварки и контроля, Черага, Алжир E-mails: a.badidi@csc.dz, h.belkhalfa@csc.dz, w.djerir@csc.dz, r.halimi@csc.dz

Предлагается экспериментальный метод оценки объемной доли углерода в стали с помощью ультразвука. Исследуется воздействие звуковых волн на образец, погруженный в резервуар с водой. Скорость продольных волн измерялась погруженным в воду частотным датчиком (5 МГц). Скорость поперечных волн измерялась контактным частотным преобразователем (4 МГц). Коэффициенты затухания ультразвуковых продольных и поперечных волн определялись по параметрам трех последовательных отраженных при прохождении образца волн. Приведены результаты исследований влияния термообработки на параметры ультразвуковых волн. Показано, что с помощью параметров ультразвуковых волн можно не только определить объемную долю углерода в стали, но и получить информацию о ее структуре и эластичности.

Ключевые слова: углеродистая сталь, ультразвуковые волны.

Введение. Как известно, после прохождения через материал параметры ультразвуковых волн изменяются, что обусловлено механическими и физическими свойствами материала [1]. В частности, эти изменения зависят от структуры и свойств материала, количества содержащегося в нем углерода, а также от способа термообработки. Проведено исследование пяти низколегированных марок сталей с различной объемной долей углерода. Для рентгенофлюоресцентной спектрометрии каждой марки стали использовалось несколько образцов, химический состав которых приведен в табл. 1 (*v* — объемная доля химических веществ в образцах). Для изучения параметров ультразвуковых волн было выбрано по три цилиндрических образца (диаметр 50 мм, толщина 20 мм) из стали следующих пяти марок: 20MC5, 28M6, 35NCD16, XC38, 45NCM16.

Таблица 1

		-					· · · ·	_					
Номер образца	$v_{ m C}, \ \%$	$v_{\mathrm{Mn}},$	$v_{\mathrm{Si}},$ %	$v_{\mathrm{P}}, \ \%$	$v_{ m S},$ %	$v_{\mathrm{Cu}},$ %	$v_{ m Al},\ \%$	$v_{\mathrm{Ti}}, \ \%$	$v_{ m Ni},\ \%$	$v_{ m Cr}, \ \%$	$v_{ m Mo}, \ \%$	$v_{ m V},\ \%$	$v_{ m Sn},\ \%$
1	0,192	1,170	0,298	0,020	0,026	0,128	0,0179	0,002	0,083	1,071	0,019	0,003	0,009
2	0,268	1,247	0,213	0,029	0,014	0,041	0,0291	0,002	0,054	0,027	0,010		0,005
3	0,344	0,418	0,230	0,020	0,012	0,203	$0,\!0497$	0,004	3,475	1,798	0,261	0,007	0,007
4	0,385	$0,\!653$	0,177	0,015	0,009	0,134	0,0034	0,002	0,066	0,030	0,011		0,015
5	$0,\!439$	$0,\!421$	0,247	0,016	0,012	0,038	$0,\!0340$	0,003	3,659	1,294	0,236	0,003	0,003

Химический состав образцов

Таблица 2

Номер образца	Марка стали	$v_{ m C},\%$	Структура образца
1	$20 \mathrm{MC5}$	0,192	Ферритно-перлитная
2	28M6	0,268	Ферритно-перлитная
3	35NCD16	0,344	Отпущенная
4	XC38	0,385	Ферритно-перлитная
5	45NCM16	$0,\!439$	Отпущенная

Структура образцов

Рис. 1. Ферритно-перлитная микроструктура различных марок стали: $a - 20 \text{MC5} (v_{\text{C}} = 0.192 \%); \ 6 - 28 \text{M6} (v_{\text{C}} = 0.268 \%); \ 6 - \text{XC38} (v_{\text{C}} = 0.385 \%)$

Рис. 2. Микроструктура отпущенной стали различных марок: a - 35NCD16 ($v_{\rm C} = 0.344$ %); 6 - 45NCM16 ($v_{\rm C} = 0.439$ %)

1. Рентгенофлюоресцентная спектрометрия. В результате металлографического исследования образцов в необработанном состоянии обнаружена структура гипоэвтектоидных сталей в двух микроструктурных состояниях (табл. 2):

— ферритно-перлитная микроструктура стали марок 20MC5, 28M6 и XC38 (рис. 1);

— микроструктура отпущенной стали марок 35NCD16 и 45NCM16 (рис. 2).

2. Твердость по Виккерсу. Для каждой марки стали была определена твердость по Виккерсу Hv [2]. Результаты представлены в табл. 3. Твердость стали по Виккерсу незначительно увеличивается с увеличением в ней объемной доли углерода (рис. 3). Однако для сталей марок 45NCM16 и 35NCD16 это увеличение является существенным, что объясняется упрочнением микроструктуры в результате отпуска.

•	. ,	•				5	•
Номер образца	a	$v_{\rm C},$	%			Hv	
1		0,19	2			$173,\!6$	
2		0,26	8			174,1	
3		0,34	4			250,7	
4		0,38	35			181,7	
5		0,43	9			284,0	
Hv							
280 -					•		
200							
200 -			•				
240							
220							
220 -							
200 -							
190				•			
180	•	•		-			
160	0.00 0	0F 0.20	0.95	0.40	0.45	64	
0,15	0,20 0,	zə 0,30	0,35	0,40	0,45	$v_{\rm C}, \%$	

. Tаблица 3 . Твердость по Виккерсу сталей с различной объемной долей углерода

Рис. 3. Зависимость твердости стали по Виккерсу Hv от объемной доли содержащегося в ней углерода

При комнатной температуре стали представляют собой в основном смесь феррита и цементита, объемная доля которых зависит от объемной доли углерода.

Следует отметить, что увеличение объемной доли карбидов приводит к увеличению механической прочности. Очевидно, что прочность зависит как от объемной доли углерода, так и от наличия и способа термообработки, которая при этом является определяющим фактором.

Такая же закономерность обнаружена при исследовании нелегированной углеродистой стали [3]. Увеличение объемной доли углерода приводит к увеличению прочности стали и уменьшению ее пластичности [4, 5]. Увеличение прочности с увеличением объемной доли углерода оказывает влияние на параметры ультразвуковых волн.

3. Экспериментальное исследование ультразвуковых волн. Используемая экспериментальная установка позволяет исследовать свойства материалов неразрушающим методом с помощью ультразвуковых волн. Образец, погруженный в резервуар с водой, облучается звуковыми волнами различной интенсивности. Автоматизированный стенд позволяет улавливать и обрабатывать ультразвуковые сигналы после их прохождения через образцы (рис. 4).

Скорость продольных волн V_L измерялась погруженным в воду частотным датчиком (5 МГц), скорость поперечных волн V_T — контактным способом с использованием преобразователя поперечных волн (4 МГц).

Коэффициенты затухания продольных α_L и поперечных α_T ультразвуковых волн определялись по трем последовательным основным отраженным сигналам, прошедшим через образец [6–9].

На рис. 5 показаны соответственно характерные сигналы продольных a_L и поперечных a_T волн, прошедших через образец из стали марки 28М6.

Результаты измерений скоростей продольных и поперечных волн приведены в табл. 4.

Рис. 4. Схема экспериментальной установки: 1 — персональный компьютер, 2 — контроллер, 3 — вода, 4 — образец, 5 — резервуар, 6 — передатчик-приемник, 7 — осциллограф

Рис. 5. Характерные сигналы продольной волны, измеренные методом погружения (a), и поперечной волны, измеренные контактным способом (b), для стали марки 28М6

	-		
Номер образца	$v_{ m C},\%$	$V_L, \mathrm{~m/c}$	V_T , м/с
1	0,192	5925 ± 15	3206 ± 11
2	0,268	5929 ± 15	3212 ± 11
3	0,344	5952 ± 15	3231 ± 11
4	0,385	5930 ± 15	3219 ± 11
5	$0,\!439$	5959 ± 15	3232 ± 11
			,

Зависимости скоростей V_L , V_T от объемной доли углерода

Таблица 4

Таблица 5

Рис. 6. Зависимости скоросте
й $V_L\left(a\right)$ и $V_T\left(\delta\right)$ от объемной доли углерода

Номер образца	$v_{ m C},\%$	α_L , дБ/мм	α_T , дБ/мм
1	0,192	$0,\!142\pm0,\!010$	$0,\!174\pm0,\!007$
2	0,268	$0{,}132\pm0{,}009$	$0,\!169\pm0,\!005$
3	0,344	$0{,}116\pm0{,}008$	$0,\!166\pm0,\!005$
4	0,385	$0{,}128\pm0{,}009$	$0,\!168\pm0,\!008$
5	$0,\!439$	$0,\!105\pm0,\!007$	$0,\!163\pm0,\!008$

Зависимости коэффициентов $lpha_L$ и $lpha_T$ от объемной доли углерода

Скорости продольных и поперечных волн, так же как и твердость, увеличиваются с увеличением объемной доли углерода (рис. 6). Закономерности изменения скоростей волн и прочности с изменением объемной доли углерода аналогичны. Наиболее значительное увеличение скорости волн наблюдается для образцов 3, 5.

Очевидно, что такая эволюция обусловлена влиянием двух факторов: объемной доли углерода и структуры стали.

Следует отметить, что по измеренным скоростям можно определить объемную долю углерода в стали и получить информацию о ее структуре. Преимуществами предлагаемой экспериментальной методики являются ее неразрушающий характер, простота и невысокая стоимость эксперимента.

Зная скорости продольных V_L и поперечных V_T волн и плотность ρ , можно определить модуль Юнга E и коэффициент Пуассона ν :

$$V_L = \sqrt{\frac{E}{\rho}} \sqrt{\frac{1-\nu}{(1+\nu)(1-2\nu)}}, \qquad V_T = \sqrt{\frac{E}{\rho}} \sqrt{\frac{1}{2(1+\nu)}}.$$

Экспериментальные значения коэффициентов затухания продольных и поперечных волн, прошедших через образец, приведены в табл. 5. С увеличением объемной доли углерода коэффициенты затухания продольных и поперечных волн уменьшаются (рис. 7).

В поликристаллических материалах коэффициент затухания α является суммой коэффициента поглощения α_A и коэффициента рассеяния α_S [10, 11]:

$$\alpha = \alpha_A + \alpha_S.$$

В области рэлеевских волн (рассматриваемый в данной работе случай), в которой $\lambda \gg D$ (λ — длина волны; D — диаметр зерна), коэффициент поглощения линейно зависит

Рис. 7. Зависимости коэффициентов $\alpha_L(a)$ и $\alpha_T(b)$ от объемной доли углерода

от частоты f, а коэффициент рассеяния пропорционален величине f^4 :

$$\alpha(f) = a_1 f + a_2 D^3 f^4 \tag{1}$$

 $(a_1, a_2 -$ константы). Из формулы (1) следует, что основную роль в процессе затухания волн играет коэффициент рассеяния α_S . С увеличением твердости уменьшается размер зерна D, следовательно, в соответствии с уравнением (1) должен уменьшаться и коэффициент затухания. Приведенные в данной работе экспериментальные результаты подтверждают этот вывод.

Из результатов экспериментов следует, что с увеличением в стали объемной доли углерода интенсивность затухания волн в ней уменьшается, причем наиболее существенно для образцов 3 и 5, которые были подвергнуты термообработке. Таким образом, затухание волн обусловлено влиянием двух факторов: объемной доли углерода в стали и ее структуры. По измеренным значениям коэффициентов затухания можно определить объемную долю углерода в стали и получить представление о ее структуре.

В соответствии с моделью Меркулова [12] примем следующие зависимости для коэффициентов затухания:

$$\alpha_L = \frac{8\pi^3 D f^4 \mu^2}{375\rho^2 V_L^3} \left(\frac{2}{V_L^5} + \frac{3}{V_T^5}\right);$$
(2)
$$\alpha_T = \frac{2\pi^3 D f^4 \mu^2}{125\rho^2 V_T^3} \left(\frac{2}{V_L^5} + \frac{3}{V_T^5}\right)$$

 $(\mu -$ коэффициент анизотропии; $\rho -$ плотность).

Из (2) следует, что с увеличением среднего размера зерна интенсивность затухания увеличивается, а с увеличением скорости распространения волн уменьшается. Эти закономерности подтверждаются полученными экспериментальными данными.

Заключение. Проведено исследование скоростей распространения и коэффициентов затухания ультразвуковых волн при их прохождении через образцы из стали. С использованием полученных данных можно определить объемную долю углерода в стали, ее упругие характеристики, а также микроструктуру, полученную в результате термообработки. Предложенный метод обладает двумя преимуществами: он является неразрушающим и позволяет легко определять скорость продольных волн.

ЛИТЕРАТУРА

- 1. Badidi Bouda A., Benchaala A., Alem K. Ultrasonic characterization of materials hardness // Ultrasonic. 2000. V. 38. P. 224–227.
- Rivenez J., Lambert A. Mesure et appréciation non destructives des gradients de dureté // CETIM Inform. 1986. N 97.
- 3. de Araujo Freitas V. L., de Albuquerque V. H. C., de Macedo S. E. Nondestructive characterization of microstructures and determination of elastic properties in plain carbon steel using ultrasonic measurements // Mater. Sci. Engng. A. 2010. V. 527, iss. 16/17. P. 4431–4437.
- Steel castings handbook. Suppl. 8. High alloy data sheets. Corrosion Ser. S. l.: Steel Founders' Soc. Amer., 2004.
- 5. **Durand-Charre M.** La microstructure des aciers et des fontes: Genèse et interprétation. Paris: SIRPE, 2003.
- Badidi Bouda A., Lebaili S., Benchaala A. Grain size influence on ultrasonic velocities and attenuation // NDTE Intern. 2003. V. 36, N 1. P. 1–5.
- 7. Gracier C., Horsten B. Simultaneous measurement of speed, attenuation, thickness and density with reflected ultrasonic waves in plates // IEEE. Ultrasonic Symp. 1994. P. 1219–1222.
- 8. Peters F., Petit L. A broad band spectroscopy method for ultrasound wave velocity and attenuation measurement in dispersive media // Ultrasonics. 2003. V. 41. P. 357–363.
- Hireskorn S., Van Andel P. W., Netzelmann U. Ultrasonic methods to detect and evaluate damage in steels // Nondestruct. Test. Evaluat. 2000. V. 15. P. 365–373.
- Research techniques in nondestructive testing / Ed. by R. S. Sharpe. S. l.: Acad. Press, 1980. V. 4.
- Saniie J., Wang T., Bilgutay N. M. Analysis of homomorphic processing for ultrasonic grain signal characterization // IEEE Trans. UFFC. 1989. V. 36, N 3. P. 365–375.
- Merkulov L. G. Investigation of ultrasonic scattering in metals // Soviet Phys. Tech. Phys. 1957. V. 1. P. 59–69.

Поступила в редакцию 10/IX 2012 г.