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Проведен анализ тенденций развития камер сгорания энергетических газотурбинных установок

большой и средней мощности передовых производителей, идущих по пути существенного повы-
шения КПД установок, увеличения топливной гибкости при сохранении экологических требова-
ний. Продемонстрирован опыт создания малоэмиссионных камер сгорания (МЭКС) во Всерос-
сийском теплотехническом институте. Приведены результаты испытаний МЭКС ГТ-16П в одно-
горелочном отсеке при полных параметрах. Показана ее доработка до двузонной, что позволило
существенно расширить границы устойчивого малоэмиссионного горения в широком диапазоне

температур наружного воздуха. При допустимых значениях NOx удалось достичь температу-
ру газов на выходе из камеры сгорания 1 700 ◦C. Проанализированы конструкции горелочных
устройств МЭКС газотурбинных установок, позволяющие избежать основных проблем, возни-
кающих при сжигании топлива с большим содержанием водорода, а именно: проскока пламени в
зону предварительного перемешивания, высоких потерь давления на горелках и неустойчивости
процесса горения. Показано, что данные конструкции не содержат лопаточного завихрителя и
выраженной зоны предварительного перемешивания.
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ВВЕДЕНИЕ

На сегодняшний день одним из трендов

развития энергетических газотурбинных уста-
новок (ГТУ) является повышение коэффициен-
та полезного действия (КПД) установок, ко-
торое напрямую связано с повышением темпе-
ратуры газов перед сопловыми лопатками 1-й
ступени турбины. Уже вводятся в эксплуата-
цию ГТУ с начальной температурой газов до

≈1 700 ◦C и увеличением КПД ГТУ до 44 %
при сохранении требований к вредным выбро-
сам, прежде всего NOx и CO.

Второй тренд связан с декарбонизацией,
заключающейся в снижении выбросов CO2 в

атмосферу, в частности, путем сокращения

использования углеродосодержащих топлив в

ГТУ и замены их водородом. При этом необхо-
димо сохранить безопасность и экологичность

установок.
Обеспечение выполнения требований к

вредным выбросам, устойчивому горению, вы-

c©Булысова Л. А., Васильев В. Д., Гутник М. М.,
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соким температурам газов касается прежде

всего камер сгорания, конструкции которых ви-
доизменяются и оптимизируются по мере воз-
никновения новых вызовов.

МЭКС ВЫСОКОТЕМПЕРАТУРНЫХ ГТУ

В настоящее время серийно выпускаются

ГТУ поколений Е (T3 ≈ 1 100 ◦C), F (T3 ≈
1 250 ◦C), G (T3 ≈ 1 350 ◦C) и Н(J) (T3 >
1 500 ◦C) мощностью до 500 МВт в простом
цикле. Так, на рис. 1 показана зависимость

КПД парогазовых установок (ПГУ) от темпе-
ратуры газов перед турбиной, которая демон-
стрирует практически линейную зависимость.
Рост температуры перед турбиной сопровож-
дается ее ростом в зоне горения, что неизбежно
приводит к росту эмиссии NOx.

Путями уменьшения образования оксидов

азота в камерах сгорания (КС) ГТУ являют-
ся снижение максимальных температур факела

и времени пребывания в нем продуктов сгора-
ния. Для сжигания природного газа в настоя-
щее время наиболее широко используются КС с

предварительным перемешиванием топлива и
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Рис. 1. Изменение КПД ПГУ разных типов [1]
от температуры перед турбиной

воздуха при коэффициентах избытка воздуха в

гомогенной смеси 1.8÷ 1.9 и равномерной, срав-
нительно невысокой (1 400 ÷ 1 550 ◦C) темпе-
ратуре факела [2]. При прочих равных услови-
ях повышение температуры горения неизбежно

приведет к экспоненциальному росту выбросов

NOx.
Избежать существенного роста эмиссии

оксидов азота при растущей температуре га-
зов на выходе КС позволяет схема последова-
тельной организации сжигания топлива в еди-
ном объеме жаровой трубы КС. Такие МЭКС
состоят из двух последовательно расположен-
ных зон горения, каждая со своим горелочным
устройством (ГУ). Первое горелочное устрой-
ство (ГУ1) является традиционным для МЭКС
с сжиганием предварительно перемешанной

топливовоздушной смеси (ТВС). Оно состоит
из завихрителей, зоны подготовки смеси, топ-
ливных форсунок и воспламенителей. Второе
горелочное устройство (ГУ2) расположено ни-
же по потоку, в него через специальные отвер-
стия подается ТВС другого состава, сжигание
которой происходит в среде с пониженным со-
держанием кислорода и высокой температурой.

Для примера рассмотрим КС энергетиче-
ской ГТУ типа GT36, относящуюся к поколе-
нию Н, с начальной температурой газов перед
турбиной 1 500 ◦C и выше. На рис. 2,а пока-
зан разрез МЭКС. Воздух, поступающий в КС,
делится на два потока (рис. 2,б). Один посту-
пает в ГУ1. Второй, охлаждая стенки жаровой
трубы, поступает в отверстия смесителя для
разбавления газов, выходящих из первой зоны
горения. Потоки хорошо перемешиваются пе-
ред входом во вторую зону горения, в которую
подается топливо (ТВС) через ГУ2.

Рис. 2. МЭКС GT36: трехмерная модель, про-
дольный разрез (а), поле температуры в про-
дольном сечении (б), изменение среднемассо-
вой температуры по длине (в):
1 — подача топлива в пилотную горелку, 2 — в

пилотную горелку с предсмешением, 3 — в основ-
ную горелку ГУ1, 4 — в горелку ГУ2 [3]

Изменение температуры газов по оси ка-
меры сгорания показано на рис. 2,в. Розжиг и
работа до холостого хода осуществляются при

подаче топлива в пилотную горелку, от холо-
стого хода до ≈10 % нагрузки работает пи-
лотная горелка с предсмешением, далее топли-
во начинает подаваться и в основную горелку

ГУ1. При достижении температуры уходящих
газов в первой зоне ≈1 250 ◦C плавно начинает

подаваться топливо в ГУ2 (рис. 2,б).
После первой зоны горения концентрация

NOx составляет всего несколько ppm, посколь-
ку в этой зоне при сравнительно низких темпе-
ратурах сгорала хорошо перемешанная бедная

топливовоздушная смесь. Температура на вхо-
де во вторую зону понижается за счет воздуха

разбавления.
Во второй зоне горения происходит дожи-

гание топлива в потоке горячих газов, обеднен-
ных кислородом. Поскольку вторая зона распо-
ложена близко к выходу из МЭКС, скорость по-
тока высокая и его рециркуляция отсутствует,
экспоненциального роста NOx не наблюдается.
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Эксплуатация ГТУ GT36 подтвердила на-
дежность и эффективность КС со схемой после-
довательного горения в едином объеме жаровой

трубы: достигнута температура перед турби-
ной более 1 500 ◦C; сохранен низкий уровень
эмиссии NOx и CO; получена гибкость по ис-
пользуемому топливу (широкий диапазон чи-
сел Воббе), малоэмиссионная работа возможна
начиная с 25%-й нагрузки.

Данная схема нашла применение в ГТУ

[4–10] малой мощности (≈8÷ 10 МВт, M7A-
03), средней мощности (≈18÷ 30 Вт, L20A и

L30A), большой мощности (более 300 МВт,
9HA, GT36), что свидетельствует о ее хорошей
масштабируемости.

ОПЫТ И ДОСТИЖЕНИЯ ВСЕРОССИЙСКОГО
ТЕПЛОТЕХНИЧЕСКОГО ИНСТИТУТА

В ВТИ были разработаны и успешно про-
шли испытания на стендах полных параметров

Рис. 3. МЭКС ГТ-16П: трехмерная модель (а), фото КС (б), зависимость эмиссии NOx и CO
(при 15 % O2) от нагрузки (Ne) при давлении воздуха на входе 1 900 кПа и температуре наруж-
ного воздуха 15 ◦C (в), выполнимость требований к NOx в диапазоне температур наружного

воздуха от −25 до +25 ◦C (г)

опытные образцы МЭКС ГТЭ-110М и ГТ-16П
[11, 12]. Схемы горелочных устройств данных
МЭКС типичны для сжигания хорошо переме-
шанной ТВС: содержат пилотную и основную

горелки, лопаточные завихрители, зону пред-
варительного перемешивания [13]. Трехмерная
модель, фотография КС, результаты испыта-
ний МЭКС ГТ-16П на стенде полных пара-
метров при температуре наружного воздуха

15 ◦C при соблюдении требований по содержа-
нию NOx в диапазоне температур наружного

воздуха от +25 до −25 ◦C показаны на рис. 3.
Согласно техническому заданию (ТЗ) ма-

лоэмиссионная работа должна быть обеспечена

при нагрузке ГТУ от 70 до 100 % в диапа-
зоне температур наружного воздуха от −25 до
+25 ◦C. Поскольку данная энергетическая ГТУ
является авиапроизводной двигателя ПС-90, то
параметры работы КС существенно меняются

в зависимости от температуры наружного

воздуха. Как видно из рис. 3,г, требования ТЗ
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выполняются в диапазоне температур наруж-
ного воздуха 0 ÷ 15 ◦C. В интервале 20 ÷ 25 ◦C
наблюдается незначительное превышение тре-
бований ТЗ по выбросам NOx. В области отри-
цательных температур наружного воздуха тре-
буется перепуск воздуха на вход в компрессор

для удовлетворения малоэмиссионного диапа-
зона согласно ТЗ.

Расширить диапазон малоэмиссионной ра-
боты в область отрицательных температур на-
ружного воздуха, а также иметь потенциаль-
ную возможность повышения температуры га-
зов перед турбиной до 1 600 ◦C и более с сохра-
нением требований к NOx можно путем разви-
тия МЭКС до двузонной за счет расположения

ГУ2 в области отверстий смесителя.
Изменение схемы сжигания топлива с од-

нозонной на двузонную обеспечивает перенос

рабочей точки ГУ1 в область более бедных зна-
чений коэффициента избытка воздуха, что поз-
воляет исключить перепуск воздуха в области

отрицательных температур наружного возду-
ха. Для удовлетворения эмиссионных характе-
ристик в области 20 ÷ 25 ◦C при работе в но-
минальном режиме можно использовать подачу

топлива через ГУ2 и его дожигание в горячих
обедненных кислородом газах первой зоны.

На рис. 4 показаны зависимости нагрузки,
доли топлива в ГУ2 и доли топлива во второй
канал основной горелки ГУ1, полученные для
МЭКС ГТ-16П при переходе на малоэмиссион-
ный режим работы и при работе в номиналь-
ном режиме, в широком диапазоне температур
наружного воздуха. Видно, что малоэмиссион-
ный режим работы КС возможен при использо-
вании схемы двузонного сжигания при темпе-
ратуре наружного воздуха −45 ◦C и 70%-й на-
грузке ГТУ, а уже при −15 ◦C диапазон мало-
эмиссионной работы возможен с 50%-й нагруз-
кой. При этом топливо в ГУ1 подается только
при температуре наружного воздуха 35 ◦C. В
данном случае подача топлива во всем диапа-
зоне температур наружного воздуха осуществ-
ляется в топливные каналы (2 шт.) основной
горелки ГУ1 с определенным распределением

топлива между ними.
В режиме номинальной нагрузки подача

топлива в ГУ2 начинается с температуры на-
ружного воздуха −35 ◦C. Максимальный рас-
ход топлива во вторую зону достигается при

+25 ◦C и составляет около 25 % от общего рас-
хода топлива на МЭКС.

В случаях, когда топливо не подается

Рис. 4. Зависимости нагрузки (Ne), доли топ-
лива в ГУ2 (B2) и доли топлива во второй ка-
нал основной горелки ГУ1 (Bmfr) от темпера-
туры наружного воздуха Tн:

а — при переходе на малоэмиссионный режим ра-
боты, б — в номинальном режиме

в ГУ2, горелочное устройство работает как

обычные отверстия смесителя (разбавления) и
формирует поле температуры на выходе из

МЭКС.
В ВТИ были проведены моделирование,

расчетные исследования процесса горения и

оценка эмиссионных характеристик при орга-
низации двух зон горения в МЭКС ГТ-16П.
При использовании двух зон горения и темпе-
ратуре газов на выходе 1 600 ◦C эмиссия NOx
снизилась с 27 до 8 ppm.

Была выполнена модернизация КС до дву-
зонной, и организован еще один топливный ка-
нал, позволяющий подавать топливо в ГУ2 по
центру отверстий смесителя, как показано на
модели рис. 5,а.

На рис. 5,б приведены зависимости эмис-
сии NOx и CO от температуры газов на вы-
ходе, полученные при испытаниях МЭКС, ис-
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Рис. 5. Модернизированная до двузонной

МЭКС ГТ-16П:

а — расчетная модель, б — результаты экспери-
ментальных исследований исходной и доработан-
ной до двузонной КС при параметрах стенда ОАО

«ВТИ» и давлении воздуха на входе 350 кПа

ходной и доработанной до двузонной в одного-
релочном отсеке, на стенде ОАО «ВТИ» при

давлении воздуха на входе 350 кПа. Получено,
что до температуры 1 590 ◦C характер изме-
нения эмиссии NOx в зависимости от темпе-
ратуры газов на выходе идентичен для обеих

схем. Для двузонной МЭКС данные лежат ни-
же, чем для однозонной, так как ГУ1 рассчита-
но на более бедные по коэффициенту избытка

воздуха смеси, чем ГУ однозонной МЭКС. При
температуре газов выше 1 600 ◦C в однозонной

МЭКС наблюдается резкий рост выбросов ок-
сидов азота, в то время как в двузонной МЭКС
характер изменения NOx сохраняется.

Таким образом, проведенные эксперимен-
тальные исследования подтвердили эффектив-
ность использования двузонной схемы сжига-

ния топлива как для расширения малоэмисси-
онного диапазона работы, так и для существен-
ного снижения эмиссии NOx. Кроме того, было
получено расширение устойчивого (беспульса-
ционного) диапазона работы.

СЖИГАНИЕ ВОДОРОДНОГО ТОПЛИВА

Существенные отличия теплофизических

свойств водорода и метана, таких как тепло-
творная способность, плотность, реакционная
способность и пр., приводят к значительным
различиям в процессе горения данных топлив.

Плотность водорода примерно в восемь

раз ниже, чем метана, поэтому для обеспечения
эквивалентной тепловой нагрузки, несмотря на
большую теплотворную способность, требует-
ся больший объемный расход топлива. Это вле-
чет за собой увеличение диаметров трубопро-
водов, габаритов регулирующей и запорной ар-
матуры. В противном случае, при неизмен-
ной геометрии, существенно возрастают поте-
ри давления на элементах камеры сгорания (го-
релках) и др.

Опыт эксплуатации показывает, что ис-
копаемые газообразные топлива с добавлени-
ем небольшой по объему доли водорода — до

30 % (что эквивалентно 5 % по массе и 11 % по

тепловой энергии для метановодородной смеси)
можно сжигать в существующих ГТУ с сухими

МЭКС. При большем содержании водорода в

топливном газе необходим переход к принципи-
ально другой конструкции горелочного устрой-
ства.

На сегодняшний день существенных

успехов в сжигании водородосодержащих

топлив достигли такие фирмы производители

ГТУ, как «Mitsubishi» — горелка multicluster,
«General Electric» — горелка multitube,
«Kawasaki» — горелка micromix. ГТУ данных
производителей с камерами сгорания, позволя-
ющими сжигать топлива, содержащие более
30 % водорода, уже эксплуатируются, что

доказывает эффективность предложенных ими

схем горелочных устройств.
Все вышеперечисленные горелки объеди-

няет отсутствие лопаточного аппарата и раз-
витой зоны предварительного перемешивания.
Факел в таких горелках стабилизируется в

большом количестве малых зон рециркуляции

или струйках ТВС и имеет вид микропламен,
расположенных вдоль поверхности фронтовой

плиты ГУ. На рис. 6 показаны схемы органи-
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Рис. 6. Микрофакельные горелочные устройства «Mitsubishi» [14–18] (а, б); «General Electric»
[19] (в, г) и «Kawasaki» [20] (д, е):
а, в, д— схемы организации смешения воздуха и топлива и стабилизации пламени; б, г, е — фотографии

зации потоков топлива и воздуха в таких мик-
рофакельных горелках и внешний вид горелок.

Как видно из рис. 6,а, в горелках

multicluster («Mitsubishi») топливо подается

через трубки малого диаметра, каждая из ко-
торых незначительно углублена в отверстия,
выполненные во фронтовой плите ГУ. Воздух

подмешивается к топливным струям, и переме-
шивание осуществляется на коротком расстоя-
нии, равном толщине фронтовой плиты ГУ. Зо-
на рециркуляции (стабилизации пламени) фор-
мируется за счет направленной подачи топлив-
ных струй внутрь объема горения, что созда-
ет перепад давления вблизи горелки. Для ГУ
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с горелками multicluster характерно большое
количество топливных подводов, которые поз-
воляют тонко регулировать процесс горения,
обеспечивая малоэмиссионное устойчивое го-
рение. Изменения формы горелок, ориентации
топливовоздушных струй, количества подаю-
щих топливо отверстий существенно влияют

на организацию процесса горения и являют-
ся инструментом регулирования как устойчи-
вости горения, так и эмиссионных характери-
стик.

Горелка multitube («General Electric»)
(рис. 6,в) состоит из системы параллельных

цилиндрических каналов диаметром порядка

1 мм, расположенных внутри фронтовой пли-
ты, через которые подается воздух в объем го-
рения. Кольцевой топливный коллектор распо-
ложен вокруг фронтовой плиты горелки. От-
ходящие от него топливные каналы находят-
ся внутри тела фронтовой плиты и перпенди-
кулярны воздушным. Таким образом, топливо
поступает через отверстия в стенках каналов

перпендикулярно воздушным струям. Проис-
ходит смешение воздуха и топлива на остав-
шейся длине цилиндрических каналов. Ско-
рость воздуха в каналах выше скорости пламе-
ни, что предотвращает проскок в зону смеше-
ния. Благодаря небольшой длине прямых ка-
налов горелки потери давления на ней неболь-
шие, несмотря на высокую скорость воздушно-
водородной смеси.

Горелка micromix («Kawasaki») пред-
ставляет собой кольцевую фронтовую плиту

(рис. 6,д), в теле которой по окружностям во-
круг оси горелки расположены три топливных

коллектора прямоугольного сечения, между ко-
торыми находятся пластины специальной фор-
мы, имеющие прямоугольные вырезы для дви-
жения воздуха сквозь них. Водород поступа-
ет из коллектора через отверстия малого диа-
метра, расположенные вблизи торцевой стен-
ки фронтовой плиты, перпендикулярно струям
воздуха, движущегося сквозь вырезы в пласти-
нах. Происходит частичное смешивание струй
непосредственно на входе в жаровую трубу, где
осуществляется диффузионное сгорание струек

водорода. Геометрия горелочного устройства
выполнена таким образом, чтобы создавались

зоны рециркуляции за плохообтекаемыми тела-
ми. За торцом фронтовой плиты горелки орга-
низуются две группы зон рециркуляции: внут-
ренняя и внешняя. Внутренняя создается на
пластинах воздухом, проходящим сквозь выре-

зы в них, а внешняя — на выступающих тор-
цевых стенках топливных коллекторов срывом

потока топливной смеси, идущей из углублен-
ных участков фронтовой плиты. Благодаря та-
кой схеме расположения зон рециркуляции, в
зоне сдвиговых слоев между ними происходит

перемешивание струй топлива и воздуха до го-
рючей ТВС. Сгорание, по замыслу разработ-
чиков, должно произойти в скоростном потоке
на коротком участке между зонами рециркуля-
ции. Пламя не должно стабилизироваться ни в
одной из зон рециркуляции, поскольку это при-
ведет к увеличению времени пребывания реа-
гентов в зоне высоких температур. Таким обра-
зом, процесс горения состоит из большого коли-
чества миниатюрных пламен протяженностью

5 ÷ 15 мм. Несмотря на то, что это горение
диффузионное, за счет быстрого смешения и
малого времени пребывания реагентов в зоне

высоких температур эмиссия NOx удовлетво-
рительная. Для данной схемы важно позицио-
нировать пламена и препятствовать их слия-
нию в радиальном направлении.

Горелочное устройство micromix
(«Kawasaki») имеет наиболее сложную концеп-
цию сжигания топлива с высоким содержанием

водорода, относительно других разработок. В
отличие от других микрофакельных горелок,
разработанных под сжигание водорода, в

данной конструкции используется преиму-
щественно диффузионное сжигание топлива,
в то время как в остальных сжигают ТВС.
Данное обстоятельство, с одной стороны, яв-
ляется преимуществом — нет риска проскока

пламени в зону перемешивания, но, с другой
стороны, недостатком — при неправильной

стабилизации эмиссия NOx будет превышать

норматив.

ЗАКЛЮЧЕНИЕ

Анализ тенденций развития камер сгора-
ния энергетических ГТУ передовых зарубеж-
ных производителей позволяет определить на-
правления, в которых должна развиваться оте-
чественная наука и инженерия в этой области.

1. Внедрение двух последовательных зон
горения в единый объем жаровой трубы, что
позволит получать высокие температуры пе-
ред турбиной и, как следствие, рост КПД

установки; выполнять требования по выбро-
сам NOx; обеспечивать широкий диапазон ма-
лоэмиссионной работы при всех температурах
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наружного воздуха; сжигать топливо разного
состава.

2. Изменение схемы подготовки топливо-
воздушной смеси и организации стабилизации

пламени газообразных топлив с большой до-
лей водорода. За счет отсутствия лопаточных
завихрителей новая схема позволяет снизить

риск проскока пламени в зоны смешения и обес-
печить низкий перепад давления при приемле-
мых размерах камеры сгорания. Такое горелоч-
ное устройство обеспечивает низкие выбросы

NOx за счет хорошего смешения топлива и воз-
духа и уменьшения длины зоны реакции. Дан-
ные схемы позволяют получить при сжигании

топлив с содержанием водорода 50 ÷ 80 % те

же диапазоны по проскоку пламени и потерям

давления, что и традиционные горелки с лопа-
точным аппаратом и зоной предварительного

смешивания, работающих на природном газе.
Исследования организации двузонного го-

рения, выполненные в ОАО «ВТИ», показали
эффективность данной схемы сжигания и пер-
спективность ее дальнейшего развития. Необ-
ходимо проведение дальнейших исследований

двузонного горения и внедрение новых микро-
факельных горелок для ГУ1 при разработках
камер сгорания перспективных высокотемпе-
ратурных ГТУ с высоким КПД и возможно-
стью сжигания водородных топлив.
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