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Проводится исследование зависимости эффективности диспергирования жидкости фор-
сункой от энергии спрея. Выполнен анализ зависимости максимальных значений энер-
гии от расхода жидкости. При расходе жидкости менее 80 г/с получена линейная за-
висимость, что указывает на высокую эффективность диспергирования. При значениях
расхода, превышающих 80 г/с, наблюдается резкое уменьшение энергии капель, что
приводит к увеличению размеров капель спрея и свидетельствует об ухудшении каче-
ства распыления. Данная закономерность наблюдается во всех рассмотренных режимах.
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Введение. Пневматические форсунки широко применяются в различных технологи-
ческих процессах для генерации мелкодисперсных спреев разнообразных жидкостей в ши-
роком диапазоне параметров истечения струи. Преимуществами этих устройств по сравне-
нию с распылителями других типов являются относительно слабая зависимость дисперс-
ности спрея от характеристик жидкости и режима истечения струи, простота конструк-
ции, невысокие требования к чистоте используемой жидкости, низкое давление в канале
подачи жидкости [1, 2]. Основными параметрами, с использованием которых оценивается
эффективность работы пневматических форсунок, являются дисперсность спрея, расходы
распыляемой жидкости и газа, в некоторых приложениях важны также геометрические
параметры факела распыла [2]. Целесообразно также ввести параметр, с помощью кото-
рого можно оценивать общую эффективность работы форсунки и определять режимы, при
которых следует ее использовать. Очевидно, что в процессе разрушения струи качество
диспергирования жидкости, так же как и геометрия факела, зависит, главным образом,
от эффективности передачи энергии газа жидкости. Таким образом, энергия спрея при
заданных расходе и скорости газа является определяющим параметром, с помощью кото-
рого можно оценить эффективность работы пневматической форсунки. В данной работе
предлагается способ определения энергии спрея с использованием экспериментальных дан-
ных, а также показана целесообразность применения данного параметра при оценке эф-
фективности диспергирования для выбора оптимального режима работы пневматической

форсунки.

Работа выполнена в рамках проекта “Численные и экспериментальные исследования континуальных
и разреженных течений применительно к задачам аэродинамики перспективных транспортных систем”
(номер госрегистрации АААА-А19-119051590050-2).
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1. Экспериментальное оборудование. Коаксиальная форсунка внешнего смеше-
ния представляет собой воздушное сопло, на срез которого подается жидкость по трубке,
расположенной вдоль оси. Для форсунки такой конфигурации получен большой объем дан-
ных [3–6], что позволяет оценить степень разрушения струи жидкости и ее зависимость от
энергии струи спрея. В данной работе канал подачи газа представляет собой конфузорное
сопло, диаметр которого в форкамере равен 19 мм, на срезе— 14 мм; для подачи жидкости
использовались трубки двух типов с внутренними диаметрами D1 = 2; 4 мм.

Исследование форсунок выполнено на установке “Газожидкостный стенд” Института
теоретической и прикладной механики СО РАН, детальное описание которой приведено
в работах [5, 6]. Установка представляет собой замкнутый контур для подачи жидко-
сти, включающий насос, сопловой узел и приемный резервуар, из которого исследуемая
жидкость вновь поступает в контур. Газ подается из ресивера среднего давления через
регулирующий клапан; параметры жидкости и газа регистрируются системой датчиков и
записываются в электронный протокол эксперимента. В качестве элементов диагностики
использованы инструменты теневой визуализации, метод PIV, прототип лазерного допле-
ровского анемометра с прямым спектральным анализом [7, 8], а также прибор Malvern
Spraytec для определения размеров частиц в потоке. В работе [5] показано, что данных,
полученных с использованием этого комплекса, достаточно для полного описания процесса
истечения газожидкостной струи и состояния спрея на различных расстояниях от среза

сопла. Процесс разрушения струи жидкости исследован при значениях расхода жидкости
Ql 6 80 г/с (диаметр трубки D1 = 2 мм) и Ql 6 280 г/с (D1 = 4 мм), расход газа варьи-
руется в диапазоне Qg = 30÷ 200 г/с, что соответствует режимам истечения в диапазоне
Npr = 1,5÷ 8,0.

Уравнение энергии спрея включает две основные составляющие: кинетическую энер-
гию капель и энергию, расходуемую на преодоление сил поверхностного натяжения:
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(ml, Vl — масса и скорость капли; n, S — количество капель, прошедших через определен-
ное сечение в единицу времени, и суммарная площадь их поверхности; σ — коэффициент

поверхностного натяжения).Масса всех капель в пренебрежении их испарением равна рас-
ходу жидкости, а суммарная площадь капель равна

S = nπd2 = 6Q/d,

где d — средний диаметр капель. Тогда с учетом определения среднеобъемной концентра-
ции частиц
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Здесь V0, D0 — скорость и диаметр струи жидкости на срезе сопла; ρl — плотность жидко-
сти; β(x) — объемная концентрация капель в сечении x; D(x) — диаметр газожидкостного

ядра струи в сечении x. Диаметр ядра струи определяется с использованием данных визу-
ализации как расстояние между двумя точками в определенном сечении струи, в которых
капли не затеняют изображение (т. е. ближайшие к границе спрея точки с максимальным
показателем освещенности).
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Рис. 1. Профили скорости капли (а) и энергии спрея (б) для форсунки с цен-
тральной трубкой диаметром 2 мм при расходе Ql = 50 г/с:
1 — Npr = 1,5, 2 — Npr = 2, 3 — Npr = 4, 4 — Npr = 6
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Рис. 2. Зависимость максимальной энергии спрея от расхода жидкости для

форсунок с центральными трубками диаметром D1 = 2 мм (а) и D1 = 4 мм (б):
1 — Npr = 1,5, 2 — Npr = 2, 3 — Npr = 4, 4 — Npr = 6, 5 — Npr = 8

2. Результаты исследования. При анализе эффективности работы форсунки срав-
нивались профили энергии струи и скорости, а также данные о размерах капель. Профили
скорости и энергии струи, полученные для форсунки с трубкой диаметром 2 мм при расхо-
де жидкости Ql = 50 г/с, представлены на рис. 1. Видно, что зависимости в значительной
мере подобны. Это объясняется тем, что кинетическая энергия капель больше энергии
поверхностного натяжения. Вблизи сопла все зависимости быстро возрастают, на рассто-
янии от среза, равном 125 мм, выходят на максимум, после чего медленно убывают. При
использовании предлагаемых критериев эффективности оптимальными являются режимы

с максимальной энергией потока спрея — показателем наиболее интенсивного межфазного

обмена импульсом, т. е. динамики капли и поверхностного взаимодействия капли и газа.
Исследуем динамику максимальной энергии спрея при увеличении расхода жидкости

в случаях использования центральных трубок диаметром 2 и 4 мм (рис. 2). На рис. 2,а
видно, что малый диаметр центральной трубки наряду с небольшим расходом жидкости
приводит к линейному увеличению энергии струи с ростом расхода жидкости как при

дозвуковых режимах истечения (Npr = 1,5; 2,0), так и при сверхзвуковых (Npr = 4, 6).
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Отклонение от линейного закона увеличения энергии наблюдается при значении расхо-
да Ql = 80 г/с, при котором энергия струи меньше прогнозируемой. По-видимому, при
этом значении расхода энергия струи газа используется наиболее эффективно; дальней-
шее увеличение расхода жидкости приведет к ухудшению качества распыла. Результаты
измерений дисперсности капель при сверхзвуковых режимах истечения показывают, что
установившийся при Ql 6 50 г/с размер капель 8 ÷ 12 мкм в режиме Npr = 6 с ро-
стом расхода до значения Ql = 80 г/с увеличивается до 20 мкм, что свидетельствует об
уменьшении эффективности распыла. Увеличение диаметра центральной трубки до 4 мм
приводит к резкому уменьшению эффективности диспергирования. На рис. 2,б видно, что
быстрое увеличение энергии при расходе Ql 6 100 г/с сменяется резким уменьшением при
Ql > 100 г/с, после чего энергия увеличивается незначительно. Изменение размеров ка-
пель свидетельствует об ухудшении качества распыла: увеличение расхода от 30 до 270 г/с
приводит к увеличению размеров капель с 10 до 50 мкм в режиме Npr = 6 и с 10 до 30 мкм
в режиме Npr = 8. Таким образом, при значениях расхода Ql > 100 г/с процесс дисперги-
рования жидкости ухудшается, дальнейший рост расхода приводит к увеличению размера
капель в потоке.

Заключение. Таким образом, невысокая эффективность распыла жидкости с исполь-
зованием коаксиальной форсунки внешнего смешения при увеличении расхода жидкости

через устройство обусловлена низкой эффективностью смешения фаз в затопленном про-
странстве. Тем не менее оценка эффективности распыления жидкости в зависимости от
энергии струи показывает, что полученные результаты хорошо коррелируют с результа-
тами измерений дисперсности и данными визуализации. Таким образом, энергия струи
является показателем эффективности диспергирования жидкости.
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