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Представлен обзор работ, посвященных исследованию винтовых течений жидкости, в
которых векторы скорости и вихря коллинеарны. Приводятся новые решения уравнений
Навье — Стокса для несжимаемой жидкости и уравнений жидкости второго порядка,
которые являются двумерными аналогами винтовых течений.
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1. Течения Громеки — Бельтрами. Пусть u(x, t) — трехмерный вектор, x =
(x1, x2, x3) — набор декартовых координат в пространстве R3, t — время. Ассоциируя
вектор u с вектором скорости жидкости, будем называть винтовым течением жидкости
такое течение, для которого выполняется соотношение

rot u = αu, (1)

где α = const.
Винтовые течения были открыты в 1881 г. И. С. Громекой [1] (см. также [2]) при

изучении стационарных движений идеальной несжимаемой жидкости, описываемых урав-
нениями Эйлера

u · ∇u = −ρ−1∇p, div u = 0. (2)

Здесь p — давление; ρ = const > 0 — плотность жидкости. Предполагается, что на жид-
кость не действует поле внешних сил или эти силы потенциальны (в последнем случае
уравнения движения можно привести к виду (2) путем введения модифицированного дав-
ления). Тогда вследствие (1), (2) давление связано с полем скоростей соотношением

p+ ρ(u · u)/2 = C ≡ const . (3)

Равенство (3) имеет вид интеграла Бернулли, справедливого для потенциальных стацио-
нарных движений идеальной жидкости, несмотря на то что исследуемое движение явля-
ется вихревым при α 6= 0. Применяя к соотношению (1) операцию rot, получаем векторное
уравнение Гельмгольца

∆u + α2u = 0. (4)

В 1889 г. Э. Бельтрами независимо обнаружил винтовые течения идеальной жидко-
сти [3]. Перевод работы [3] на английский язык опубликован в 1985 г. [4]. В зарубежной
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литературе решения (1), (2) называются течениями Бельтрами, что не соответствует дей-
ствительности. Будем называть решения переопределенной системы (1), (2) течениями
Громеки — Бельтрами.

2. Решения Стеклова, Богоявленского и Галкина. Уравнения Навье — Стокса

могут быть записаны в виде [5]

vt +∇(v · v)/2− ω × v = −ρ−1∇p+ ν∆v, div v = 0, (5)

где ω = rot v. Будем искать решения уравнений (5) для винтовых течений вязкой жид-
кости в виде v = f(t)u, где вектор u(x) удовлетворяет соотношению (1). Уравнения (5)
справедливы, если положить

p+ ρ(v · v)/2 = K(t), (6)

где K(t) — произвольная функция; функция f(t) удовлетворяет уравнению f ′ + α2νf = 0.
При выводе этого уравнения учтено соотношение

∆v + α2v = 0, (7)

вытекающее из (4). Таким образом, f = e−α2νt, что позволяет представить винтовые те-
чения вязкой жидкости в виде (6) и

v = e−α2νt u(x). (8)

Здесь u(x) — произвольное решение системы (1).
Решение (6), (8) получено в 1896 г. В. А. Стекловым [6]. В 1919 г. такое же решение

было получено В. Тркалом [7].
Среди решений системы (1) имеются так называемые ABC-решения [8], в которых

u1 = A sin x3 + C cosx2, u2 = B sin x1 + A cosx3, u3 = C sin x2 +B cosx1

(A, B, C — постоянные). В работе О. И. Богоявленского [9] найден широкий класс решений
системы (1), обобщающий ABC-решения, и на его основе построено семейство точных
решений уравнений Навье — Стокса, обладающих функциональным произволом:

v(x, t) = e−α2νt

∫ ∫
S2

[sin (αk · x)T (k) + cos (αk · x)k × T (k)] dσ,

(9)

p+ ρ(v · v)/2 = K(t).

Здесь интеграл берется по любой мере dσ на двумерной единичной сфере S2:
k · k = 1; T (k) — произвольное гладкое векторное поле, касательное к единичной сфере;
T (k) · k = 0; α 6= 0 — произвольный параметр. Для специального класса векторных полей
T (k) и евклидовой меры dσ решения (9) имеют солитоноподобные свойства и называются
висконами [10, 11].

Если мера dσ имеет вид dσ = δ(k1)+ . . .+δ(kP ), где δ — мера Дирака, из формулы (9)
получаем точные решения

v(x, t) = e−α2νt
P∑

i=1

[sin (αki · x)T (ki) + cos (αki · x)ki × T (ki)]. (10)

Здесь ki · ki = 1; T (ki) · ki = 0. Решения (9), как и решения (10), определены во всем про-
странстве. Если векторы ki произвольны, то решение (10) является квазипериодической
функцией координат. Это решение становится периодическим по переменным x1, x2, x3

при специальном выборе векторов ki и может иметь прямоугольную или косоугольную

решетку периодов [10].
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Новое семейство винтовых течений построил В. А. Галкин [12]. Выберем в качестве
характерного масштаба длины величину α−1, где α — коэффициент пропорциональности

в соотношении (1), а в качестве масштаба времени величину (α2ν)−1. Область течения D
может быть шаром BR радиусом R, сферическим слоем BR1,R2

= {x ∈ R3, 0 < R1 <

‖x‖ < R2} либо совпадать с пространством R3. Границу шара BR обозначим SR. Пусть
значения радиусов сфер SR, являющихся границами шаровых областей D, удовлетворяют
условиям

tg (R) = R, R > 0. (11)

Обозначим через ρk неотрицательные корни уравнения (11), которые упорядочим по воз-
растанию номеров k ∈ N:

0 = ρ0 < ρ1 < ρ2 < . . . < ρk < . . . .

При k →∞ справедлива асимптотическая формула

ρk ≈ −π/2 + kπ, k � 1.

Положим

ū(r) = r−1 sin (r), r > 0, ū(r) = 1, r = 0. (12)

Определим для каждой точки x ∈ R3 \ {0} с евклидовой нормой r(x) > 0 трех-
параметрическое семейство векторных полей, зависящее от произвольных параметров
a = (a1, a2, a3) ∈ R3 и заданное формулами

Ua(x) =

 ū′(r)

r

 x2 −2 −x3

−x1 x3 −2
−2 −x2 x1

 +

+
1

r2

(
ū′′(r)− ū′(r)

r

)  x1x3 −(x2
2 + x2

3) x1x2

x2x3 x1x2 −(x2
1 + x2

3)
−(x2

1 + x2
2) x1x3 x2x3


 a1

a2

a3

 (13)

(x1, x2, x3 — безразмерные декартовы координаты). Векторное поле Ua(x) удовлетворяет
соотношению (1) с α = 1. Таким образом, построено новое семейство винтовых течений,
зависящее от трех произвольных параметров a1, a2, a3. Векторное поле Ua(x) может быть
продолжено в классе функций C∞(R3) в точку x = 0. Заметим, что в начале координат
верно соотношение

lim
x→0

Ua(x) = Ua(0) =
2

3

 a1

a2

a3

 . (14)

Как показано в работе [12], векторное поле Ua(x) является касательным в каждой точке x
на сфере Sρk

, где ρk — корни уравнения (11), упорядоченные в порядке возрастания номе-

ров k ∈ N. Векторное поле Ua(x), определенное на R3 формулами (13), (14), удовлетворяет
следующим дифференциальным тождествам:

divUa = 0; (15)

∆Ua + Ua = 0; (16)

(Ua · ∇)Ua =
1

2
∇(Ua · Ua). (17)
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Формулы (15)–(17) получены в результате применения указанных операторов к формулам
(12)–(14). При обосновании формул (16), (17) учитывается, что функция ū(r(x)), опреде-
ленная формулами (12), является собственной функцией трехмерного оператора Лапласа,
т. е.

∆ū(r(x)) + ū(r(x)) = 0, r(x) = (x2
1 + x2

2 + x2
3)

1/2, x ∈ R3.

Сформулируем основной результат работы [12]. Определим векторное поле

Va(x, t) = Ua(x) e−t, x ∈ R3, t > 0, (18)

где t — безразмерное время, и скалярную функцию (безразмерное давление)

P (x, t) = −(Vα(x, t), Vα(x, t))/2 + β(t), (19)

где β(t) — произвольная функция времени t. Тогда пара (Vα, P ) является решением си-
стемы уравнений Навье — Стокса в области D = {x ∈ R3}. Более того, на границе Sρk

каждого шара Bρk
= {x ∈ R3: ‖x‖ < ρk}, k = 1, 2, . . . выполняются условия скольжения

(Vα(x, t),n(x)) = 0, x ∈ Sρk
, (20)

где n(x) — вектор нормали к поверхности Sρk
. Это означает, что формулы (18), (19)

являются решением системы уравнений Навье — Стокса с условием (20) в каждом шаре
D = Bρk

и сферическом слое D = Bρkρl
, 1 6 k < l 6 +∞. Векторное поле скоростей (18),

рассматриваемое в области D = {x ∈ R3} и сферических слоях D = R3 \ (Bρk
∪ Sρk

),
стремится к нулю при x→∞.

Течения, описываемые решениями (18), (19), имеют слоистую, стратифицированную
по сферическим слоям Bρkρl

структуру. Движение, описываемое этими решениями, явля-
ется вихревым. В работе [12] приведена картина линий тока в таких течениях и изучены
их инвариантные подмножества.

3. Двумерные аналоги винтовых течений. Запишем уравнения Навье — Стокса

в случае плоского течения:

ut + uux + vuy = −ρ−1px + ν∆u,

vt + uvx + vvy = −ρ−1py + ν∆v, (21)

ux + vy = 0.

Здесь u, v — проекции вектора скорости на оси x, y декартовой системы координат соот-
ветственно. Исключив из системы (21) функцию p путем перекрестного дифференцирова-
ния и введя функцию тока ψ с помощью соотношений

u = ψy, v = −ψx, (22)

получаем уравнение для функции тока [5]

∂∆ψ

∂t
+
∂ψ

∂y

∂∆ψ

∂x
− ∂ψ

∂x

∂∆ψ

∂y
= ν∆∆ψ. (23)

Добавим к уравнению (23) дифференциальную связь

∆ψ = −cψ, (24)

где c = const. Из условий совместности уравнений (23), (24) следует равенство

ψt = −cνψ. (25)

Уравнения (24), (25) для одной функции ψ образуют совместную систему. Решение этой
системы имеет вид

ψ = ϕ(x, y) e−cνt, (26)
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где функция ϕ удовлетворяет уравнению Гельмгольца

∆ϕ+ cϕ = 0. (27)

Возвращаясь к уравнениям (21) и используя соотношения (22), (24), находим давление

p = K(t)− ρ(u2 + v2 + cψ2)/2. (28)

Заметим, что при заданном поле скоростей функция тока определяется по формулам (22) с
точностью до аддитивной функции времени. Это замечание справедливо и для давления.
Фиксируя значение функции тока в некоторой точке области течения, можно однозначно
определить давление из соотношения (28).

Решение (26) зависит от знака постоянной c. Если c < 0, то решение экспоненциально
растет со временем. Такое решение не имеет физического смысла. Пусть c > 0. Введем
обозначение c = α2 и запишем уравнение (27) в виде

∆ϕ+ α2ϕ = 0. (29)

При этом решение (26) принимает вид

ψ = ϕ(x, y) e−α2νt . (30)

Можно провести аналогию решения (30) с решением Стеклова (8). Во-первых, зависимости
обоих решений от времени одинаковы. Во-вторых, оба решения описываются в обозначе-
ниях уравнения Гельмгольца, однако в первом случае это уравнение является векторным
(уравнение (7)), а во втором случае — скалярным (уравнение (29)). Различие состоит в
использовании для давления разных формул: (9) и (28). Кроме того, в решениях, описыва-
ющих винтовые течения, имеется линейная связь между вектором скорости и ее вихрем (1),
а в решениях, описывающих плоские течения, подобная зависимость (24) имеет место для
функции тока и завихренности ω ≡ vx − uy = ∆ψ.

Следует отметить, что оба решения (8) и (30) могут быть получены методом диффе-
ренциальных связей [13].

Уравнение (29) допускает разделение переменных, что позволяет представить его ре-
шения в виде

ϕ = cos (kx,ix) sin (ky,iy).

Здесь i ∈ N; k2
x,i + k2

y,i = α2. Более общим решением уравнения (29) является решение

ϕ = a1 cos (kx,1x) sin (ky,1y) + . . .+ an cos (kx,nx) sin(ky,ny), (31)

где a1, . . . , an — произвольные постоянные; n — произвольное натуральное число; k2
x,i +

k2
y,i = α2 (1 6 i 6 n). При специально выбранных волновых числах kx,i и ky,i решение (31)
является периодической функцией x и y. В общем случае получаем почти периодическое
решение уравнений Навье — Стокса по пространственным координатам. Если в уравне-
нии (27) c < 0, то можно построить его решения вида (31), заменив функцию sin (ky,iy) на
sh (ky,iy) и cos (kx,ix) на ch (kx,ix).

Заметим, что аналогичные (31) решения можно получить, если в качестве независи-
мых переменных в уравнении (29) выбрать x и z, а также y и z. Заменяя в формулах (31)
аргументы x и y на y и z, а затем на z и x, в силу (23), (30) получаем решения урав-
нения для функции тока в новых переменных. Суммируя полученные решения, получаем
трехмерные течения вязкой несжимаемой жидкости.

Рассмотрим вращательно-симметричные решения уравнений Навье — Стокса. Далее
r, z — цилиндрические координаты, vr, vz, vϕ — радиальная, осевая и окружная компо-
ненты скорости соответственно. Искомые функции удовлетворяют уравнениям

∂vr

∂t
+ vr

∂vr

∂r
+ vz

∂vr

∂z
−
v2
ϕ

r
= −1

ρ

∂p

∂r
+ ν

(∂2vr

∂r2
+

1

r

∂vr

∂r
− vr

r2
+
∂2vr

∂z2

)
,
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∂vϕ

∂t
+ vr

∂vϕ

∂r
+ vz

∂vϕ

∂z
+
vrvϕ

r
= ν

(∂2vϕ

∂r2
+

1

r

∂vϕ

∂r
−
vϕ

r2
+
∂2vϕ

∂z2

)
,

(32)∂vz

∂t
+ vr

∂vz

∂r
+ vz

∂vz

∂z
= −1

ρ

∂p

∂z
+ ν

(∂2vz

∂r2
+

1

r

∂vz

∂r
+
∂2vz

∂z2

)
,

∂vr

∂r
+
vr

r
+
∂vz

∂z
= 0.

Последнее уравнение в (32) позволяет ввести функцию тока Ψ(r, z, t), такую что

vr = −1

r

∂Ψ

∂z
, vz =

1

r

∂Ψ

∂r
. (33)

Исключая давление путем перекрестного дифференцирования первого и третьего уравне-
ний системы (32) и переходя от функций vr, vz к функции тока по формулам (33), для
функций Ψ и w = rvϕ получаем систему уравнений

(EΨ)t + r[Ψr(r
−2EΨ)z −Ψz(r

−2EΨ)r] = νE2Ψ− r−2(w2)z,
(34)

wt + r−1(Ψrwz −Ψzwr) = νEw,

где E — оператор Стокса:

E =
∂2

∂r2
− 1

r

∂

∂r
+

∂2

∂z2
.

Вращательно-симметричные аналоги винтовых течений для уравнений Навье —
Стокса детально исследованы в работе [14]. Ниже предлагается другой подход к их по-
строению, основанный на методе дифференциальных связей.

Добавим к уравнениям (34) дифференциальную связь

EΨ = −cΨ, (35)

где c — постоянная. Условие совместности переопределенной системы (34), (35) имеет вид

(w2 − cΨ2)z = 0. (36)

Если c < 0, то система (34), (35) не имеет нетривиальных решений. В случае c > 0 введем
обозначение c = α2. Функция Ψ удовлетворяет уравнению

EΨ + α2Ψ = 0, (37)

для w получаем

w = αΨ. (38)

(При интегрировании уравнения (35) использовалось естественное условие w → 0 при
r → 0; кроме того, без потери общности можно считать α > 0.)

В силу (34), (36) первое уравнение (34) принимает вид

Ψt = −α2νΨ. (39)

Функция (38) удовлетворяет второму уравнению (34). Из (37), (38) получаем

Ψ = ϕ(r, z) e−α2νt, (40)

где функция ϕ является произвольным решением уравнения

Eϕ+ α2ϕ = 0. (41)
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Таким образом, поле скоростей в рассматриваемом течении определяется по форму-
лам (33) и vϕ = αr−1Ψ, где функция Ψ имеет вид (40); функция ϕ удовлетворяет уравне-
нию (41). Выражение для давления записывается следующим образом:

p = K(t)− ρ(v2
r + v2

ϕ + v2
z)/2. (42)

Если K = const, то соотношение (42) принимает вид интеграла Бернулли, который связы-
вает компоненты скорости и давление при потенциальном стационарном течении идеаль-
ной жидкости, несмотря на то что изучаемое течение является вихревым нестационарным
движением вязкой жидкости. Имеет место аналогия между вращательно-симметричным
течением, заданным равенствами (40)–(42), и винтовым течением вязкой жидкости с по-
лем скоростей вида (8).

Следует отметить, что вращательно-симметричное движение, аналогичное винтовому
течению, имеет три ненулевые компоненты скорости. Заметим также, что стационарные
вращательно-симметричные движения идеальной жидкости (аналоги течений Громеки —
Бельтрами) были изучены в работе [15]. В частности, рассмотрены такие течения в круг-
лой трубе и во всем пространстве, описываемые уравнением (37). Следует отметить, что
не любое гладкое решение уравнения (37) позволяет получить регулярное поле скоростей.
Рассмотрим решение

Ψ = α−1ν[(αr)2 + cos (αz)].

Этому решению соответствует поле скоростей

vr = −νr−1 sin (αz), vz = 2αν, vϕ = ν[α2r + r−1 cos (αz)],

имеющее особенность на оси симметрии.
4. Винтовые течения жидкости второго порядка и их двумерные анало-

ги. Модель жидкости второго порядка, сформулированная в работе [16], характеризуется
следующей зависимостью тензора напряжений P от кинематических параметров течения:

P = −pI + 2ρνD + 2ρκ
(dD
dt

+DW −WD
)
. (43)

Здесь тензор скоростей деформаций D и тензор завихренностиW — симметричная и анти-
симметричная составляющие тензора ∇v; κ = const > 0 — нормализованный коэффици-
ент релаксационной вязкости; d/dt — оператор полного дифференцирования по времени:

d

dt
=

∂

∂t
+ v · ∇.

Уравнения жидкости второго порядка могут быть записаны в виде [17]

∂

∂t
(v − κ ∆v) + rot (v − κ ∆v)× v = −∇

(p
ρ

+
1

2
v · v − κ(v ·∆v +D : D)

)
+ ν∆v,

(44)
div v = 0.

В работе [18] построены винтовые течения жидкости второго порядка, получаемые
путем присоединения к системе (44) дифференциальной связи

∆v = −α2v (45)

и исследования совместности переопределенной системы (44), (45). В результате имеем

следующее представление решения этой системы:

v = e−λt u(x), ∆u + α2u = 0, λ =
α2ν

1 + κα2
,

(46)
p = −ρ

[(1

2
+ κα2

)
v · v + κD : D

]
+K(t).
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Если κ = 0, то решение (46) переходит в решение Стеклова уравнений Навье — Стокса. В
работе [18] приведены аналоги решений Богоявленского, описанных в п. 2, для уравнений
жидкости второго порядка. Отличие решений уравнений Навье— Стокса от решений (46)
состоит в декременте затухания полей скорости и давления. Если в первом случае декре-
мент затухания равен α2ν, то во втором случае его зависимость от параметра α (третья
формула (46)) более сложная. Заметим, что величина α−1, обратная параметру α, является
характерным масштабом длины в вихревых течениях. Случай больших α соответствует
мелкомасштабным по пространственным координатам возмущениям. Предельный переход
α→∞ в выражении для λ приводит к равенству λ∞ = κ−2ν.

Рассмотрим плоские движения жидкости второго порядка. Уравнения импульса таких
движений получаются путем подстановки в уравнение vt + v · ∇v = divP выражения (43)
для тензора напряжений. Не представляя уравнения движения для компонент скорости u, v
и давления, запишем уравнение для функции тока ψ

∂ (∆ψ − κ ∆2ψ)

∂t
+
∂ (∆ψ, ψ)

∂ (x, y)
= ν∆2ψ + κ

∂ (∆2ψ, ψ)

∂ (x, y)
, (47)

где ∆ — оператор Лапласа по переменным x, y. Добавляя к уравнению (47) дифференци-
альную связь (24), получаем условие совместности данных уравнений

(1 + κc)ψt = νcψ.

Отсюда следует

ψ = ϕ(x, y) exp [−cν(1 + κc)−1t], (48)

где функция ϕ удовлетворяет уравнению Гельмгольца (27). Если коэффициент c в этом
уравнении положителен: c = α2, то свойства плоского аналога винтового движения жид-
кости второго порядка почти такие же, как у обычной ньютоновской жидкости. Различия
наблюдаются в формуле для давления, которая принимает вид

p = K(t)− ρ{(u2 + v2 + cψ2)/2 + κ [c(u2 + v2) +D : D]},

и в выражении для показателя экспоненты в формуле (48). Предположим, что c < 0,
1 + κc > 0. Тогда решение (48) экспоненциально увеличивается со временем. При
этом функция ϕ может неограниченно возрастать при x → ∞, y → ∞, например,
ϕ = ν exp [2−1/2 |c|1/2(x+ y)].

Аналогичным образом строятся вращательно-симметричные решения уравнений

жидкости второго порядка, где vr, vz заданы формулами (33); vϕ = αr−1Ψ; Ψ =
ϕ(r, z) exp [−α2ν(1 + κα2)−1t]; функция ϕ — произвольное решение уравнения (41). Вы-
ражение для давления имеет вид

p = K(t)− ρ[v · v/2 + κ(α2v · v +D : D)].

Последнее равенство является аналогом интеграла Бернулли для винтовых движений жид-
кости второго порядка.

Заключение. С помощью метода дифференциальных связей построены новые реше-
ния уравнений Навье — Стокса и уравнений жидкости второго порядка, которые являют-
ся двумерными аналогами решений, описывающих винтовые течения вязкой несжимаемой
жидкости. Важным свойством винтовых течений и их аналогов является существование
интеграла Бернулли, несмотря на то что движение непотенциально.
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