УДК 665.632:544.47:544.344:547.52 DOI: 10.15372/KhUR2021285

Влияние природы источника кремния на физико-химические свойства Zn-алюмосиликата и его активность в процессе ароматизации пропана

А. А. ВОСМЕРИКОВ, Л. Н. ВОСМЕРИКОВА, С. А. ПЕРЕВЕЗЕНЦЕВ, А. В. ВОСМЕРИКОВ

Институт химии нефти СО РАН, Томск (Россия) E-mail: antonvosmerikov@gmail.com

Аннотация

Исследовано влияние природы источника кремния на физико-химические свойства синтезированных Znалюмосиликатов и их каталитическую активность в процессе превращения пропана в ароматические углеводороды. Показано, что источник кремния играет важную роль при гидротермальном синтезе Zn-алюмосиликата, оказывая влияние на скорость кристаллизации, физико-химические и каталитические свойства получаемого продукта. По результатам испытаний катализаторов установлена их высокая активность в процессе ароматизации пропана. Селективность образования ароматических углеводородов на полученных образцах составляет более 40 % при практически полном превращении исходного сырья. Наибольшей активностью в процессе превращения пропана в ароматические углеводороды обладает Zn-алюмосиликат, синтезированный с использованием белой сажи: выход ароматических углеводородов при температуре 600 °C составляет 42.9 %, а конверсия – 99 %. Методами рентгенофазового анализа, термопрограммированной десорбции аммиака и низкотемпературной адсорбции азота исследованы свойства синтезированных образцов Zn-алюмосиликатов и установлены их отличительные особенности, влияющие на каталитические свойства катализаторов в процессе превращения пропана в ароматические углеводороды.

Ключевые слова: цинкалюмосиликат, пропан, ароматические углеводороды, активность, селективность, кислотность

введение

В настоящее время в России и других странах мира достаточно остро стоит проблема утилизации попутного нефтяного газа (ПНГ), который служит ценным сырьем для получения различных химических продуктов, а также используется в энергетических целях. Ограничение широкого применения природного газа (ПГ) и ПНГ в качестве сырья для химических процессов связано со сложностью активации входящих в их состав высокостабильных молекул низших алканов. По этой причине большую значимость приобретает разработка способов превращения компонентов ПГ и ПНГ в углеводороды бо́льшей молекулярной массы, в частности в ароматические соединения, на цеолитсодержащих катализаторах [1-7].

В основе получения высококремнеземных цеолитов лежит метод гидротермальной кристаллизации щелочных алюмокремнегелей. На процесс кристаллизации значительное влияние оказывает природа сырьевых реагентов, состав реакционных смесей, условия синтеза, что позволяет регулировать структуру, морфологию, дисперсность и химический состав кристаллов, кислотность и, как следствие, активность катализаторов. При фазовых переходах в процессе кристаллизации из гидротермальных систем вначале образуется термодинамически наименее стабильная модификация, которая затем постепенно уступает место все более устойчивым формам [8]. Такие превращения могут протекать только в определенной реакционноспособной среде. Это побуждает исследователей применять разные соединения в качестве источников алюминия и кремния, а также готовить на их основе смеси, различные как по химическому составу, так и по физическим свойствам.

Цель данной работы – изучение влияния природы источника кремния на физико-химические свойства полученных Zn-алюмосиликатов и активность этих катализаторов в процессе превращения пропана в ароматические углеводороды (ApУ).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Цинкалюмосиликаты (Zn-AC) с силикатным модулем 40, содержащие 0.82 мас. % оксида цинка, были получены методом гидротермальной кристаллизации путем частичной замены алюминия на цинк в исходном алюмокремнегеле. В качестве источника кремния использовали жидкое стекло (19 % SiO,, ООО "Ишимбайский специализированный химический завод катализаторов", Россия), золь кремниевой кислоты Ludox HS-40 (40 % SiO₂, Grace Division, CША) и белую сажу БС-100 (86 % SiO₂, АО "Башкирская содовая компания", Россия), источниками оксидов алюминия и цинка служили растворы их азотнокислых солей – $Al(NO_3)_3 \cdot 9H_2O$ и Zn(NO₃), · 6H₂O (квалификации "ч"), а структурообразующим компонентом – гексаметилендиамин (ГМДА, квалификация "ч", Merck, Франция).

Цинкалюмосиликат на основе жидкого стекла (Zn-AC (ЖС)) готовили путем добавления к жидкому стеклу (19 % SiO₂, 7 % Na₂O, 74 % H₂O) последовательно водного раствора ГМДА, водных растворов нитрата алюминия (Al(NO₃)₃ · 9H₂O) и нитрата цинка (Zn(NO₃)₂ · 6H₂O). Кислотность реакционной смеси доводили до рН 10.8 добавлением раствора азотной кислоты (1 моль/л).

Цинкалюмосиликат на основе белой сажи (Zn-AC (БС)) готовили путем смешивания раствора гидроксида натрия (NaOH) с белой сажей БС-100 при интенсивном механическом перемешивании. Далее добавляли водные растворы Al(NO₃)₃ · 9H₂O, Zn(NO₃)₂ · 6H₂O и ГМДА. Кислотность исходной реакционной смеси соответствовала рН 11.2-11.4, и ее регулирование не требовалось.

Синтез цинкалюмосиликата на основе золя (Zn-AC (3)) с использованием в качестве источ-

ника кремния 40 % золя кремниевой кислоты осуществляли следующим образом: при интенсивном перемешивании к золю последовательно добавляли водные растворы щелочи, нитрата алюминия, нитрата цинка и ГМДА. Кислотность исходной реакционной смеси соответствовала рН 11.2–11.4, и ее регулирование не требовалось.

При синтезе всех образцов Zn-AC в качестве "затравки" добавляли 1.0–1.5 % цеолита (от массы используемого в синтезе SiO₂). Кристаллизацию Zn-AC проводили в стальных автоклавах с тефлоновыми вставками емкостью 0.25-0.5 л в стационарном режиме в течение 2-5 сут при 175 °С. По окончании кристаллизации твердую фазу отделяли от жидкой фильтрованием, отмывали от избытка NaOH дистиллированной водой и сушили при 100 °С в атмосфере воздуха в течение 8 ч. Для удаления структурообразующей добавки полученные образцы прокаливали при 550 °C в течение 8 ч. Далее для перевода в активную NH₄-форму образцы обрабатывались 25 %-м водным раствором NH₄Cl с использованием водяной бани при 90 °С в течение 2 ч при расходе 10 г раствора на 1 г Zn-AC. Затем полученную NH₄-форму Zn-AC фильтровали и сушили в сушильном шкафу при 110 °С. Для разложения иона аммония и образования Н-формы образца полученную NH₄-форму Zn-AC прокаливали в муфельной печи при 550 °C на воздухе в течение 6 ч.

Качество синтезируемых образцов Zn-AC контролировали с помощью ИК-спектроскопии и рентгенофазового анализа (РФА). ИК-спектры исследуемых образцов регистрировали с помощью ИК-Фурье спектрометра Nicolet 5700 (TermoElectron, США) в области 2000-400 см⁻¹. Рентгенофазовый анализ синтезированных Zn-AC проводили с использованием дифрактометра DISCOVER D8 (Bruker, Германия).

Удельную поверхность (S_{yg}) Zn-AC и параметры пористой структуры определяли методом низкотемпературной адсорбции азота с помощью автоматического газоадсорбционного анализатора Sorbtometer M (ООО "КАТАКОН", Россия). Расчет S_{yg} исследуемого образца выполняли с использованием многоточечного метода Брунауэра-Эммета-Теллера (БЭТ). Объем и размер пор катализатора определяли с использованием модели ВЈН (Barett-Joyner-Halenda) из данных изотерм адсорбции и десорбции при относительном давлении $P/P_0 = 0.99$.

Тестирование кислотных свойств поверхности катализаторов проводили методом термопрограммированной десорбции (ТПД) аммиака, 100

Катализатор	Источник кремния	Время	Степень
		синтеза, сут	кристалличности,
Zn-AC (米C)	Жидкое стекло	5	100
Zn-AC (3)	Золь Ludox HS-40	3	100

ТАБЛИЦА 1 Характеристика кристаллических цинкалюмосиликатов

Белая сажа БС-100

Примечание. Здесь и в табл. 2-4: Zn-AC – цинкалюмосиликат; ЖС – жидкое стекло; З – золь; БС – белая сажа БС-100.

2

* по данным ИК-спектроскопии и РФА.

позволяющим определить количество кислотных центров и распределение их по силе. Аммиак адсорбировали при 100 °С на предварительно оттренированный образец. Десорбцию аммиака с поверхности Zn-AC проводили в режиме линейного нагрева со скоростью 10 °С/мин. Концентрация кислотных центров соответствовала количеству десорбированного аммиака, а их сила – температурным максимумам на десорбционных кривых.

Для изучения процесса превращения пропана в АрУ и исследования свойств синтезированных катализаторов использовали стендовую установку проточного типа. Каталитическую конверсию пропана (степень чистоты – 99.8 об. %) проводили при атмосферном давлении, объемной скорости подачи сырья 250 ч⁻¹ и варьировании температуры реакции (T) от 450 до 600 °С. Продукты реакции анализировали методом газожидкостной хроматографии (ГЖХ) с использованием хроматографа "Хроматэк-Кристалл 5000.2" (ГК "Новые технологии", Россия). В ходе экспериментов определяли степень превращения пропана, выход газообразных и жидких продуктов, а также рассчитывали селективность образования продуктов реакции.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

%*

В табл. 1 представлены характеристики полученных кристаллических образцов Zn-AC. По данным ИК-спектроскопии установлено, что все синтезированные образцы имеют полосы поглощения, характерные для высококремнеземных цеолитов структурного типа MFI, и обладают 100 %-й степенью кристалличности. При этом обнаружено, что скорость кристаллизации Zn-AC зависит от используемого при их синте-

Рис. 1. Рентгенограммы цинкалюмосиликатов, синтезированных с использованием разных источников кремния. Здесь и на рис. 2–5: Zn-AC – цинкалюмосиликат; ЖС– жидкое стекло; З – золь; БС – белая сажа БС-100.

Zn-AC (BC)

зе источника кремния и увеличивается в ряду: Zn-AC (ЖС) < Zn-AC (З) < Zn-AC (БС). Так, например, синтез Zn-AC (ЖС) длится в течение 5 сут, а при получении образца Zn-AC (БС) время синтеза сокращается до 2 сут.

На рис. 1 представлены рентгенограммы образцов Zn-AC, синтезированных с использованием разных источников кремния. По результатам РФА установлена принадлежность всех синтезированных образцов к цеолиту структурного типа MFI и к ромбической сингонии [9]. Об этом свидетельствует наличие максимумов в области $2\theta = 6-50^{\circ}$: триплета при 23.0, 24.0 и 24.4°, пиков при 29.3 и 29.6° и дублета при 45.0–45.5°. Кроме того, рентгенограммы показывают присутствие рефлексов ZnO в области $2\theta = 34.4-37.2^{\circ}$.

Исследования кислотных свойств Zn-алюмосиликатов показали, что все образцы имеют два типа кислотных центров – слабые и сильные, с температурными максимумами десорбции аммиака Т, и Т, соответственно (рис. 2, табл. 2). Из представленных в табл. 2 данных видно, что образцы Zn-AC, полученные на основе разного источника кремния, отличаются по кислотным свойствам. Наименьшее количество сильных кислотных центров содержит Zn-алюмосиликат, синтезированный с использованием жидкого стекла (Zn-AC (ЖС)). Кроме того, этот образец обладает и наименьшей силой кислотных центров обоих типов. Катализаторы, полученные с использованием в качестве источника кремния золя и белой сажи, характеризуются наличием слабых кислотных центров одинаковой силы, но для образца Zn-AC (З) наблюдается их более высокое содержание. Также для образца Zn-AC (3) наблюдается смещение максимума высокотемпературного пика в область более высоких температур, что свидетельствует об увеличении силы сильнокислотных центров.

Исследования текстурных свойств Zn-алюмосиликатов, различающихся природой исполь-

Рис. 2. Термодесорбционные спектры цинкалюмосиликатов. Обозн. см. рис. 1.

зуемого при синтезе источника кремния, показали, что наименьшую удельную поверхность и наименьший объем пор имеет образец Zn-AC, синтезированный с использованием жидкого стекла. При этом данный образец характеризуется и наименьшим средним диаметром пор. Образцы, полученные с использованием золя и белой сажи, обладают практически одинаковой величиной удельной поверхности и одинаковым средним диаметром пор, при этом суммарный объем пор для второго образца несколько выше и составляет 0.187 см³/г (см. табл. 2).

Таким образом, исследования кислотных, структурных и текстурных свойств образцов Zn-AC, синтезированных с использованием разных источников кремния, показали, что они отличаются друг от друга структурными свойствами, количеством и соотношением слабых и сильных кислотных центров, что, в свою очередь, может оказывать влияние на активность и селективность катализаторов в процессе ароматизации пропана.

Результаты исследований каталитических свойств Zn-алюмосиликатов, приготовленных с

ТАБЛИЦА 2

Кислотные и текстурны	е характеристики	цинкалюмосиликатов
-----------------------	------------------	--------------------

Катализатор Т _{макс} , °С		Концен	Концентрация, мкмоль/г		$S_{_{\rm yd}}$, м $^2/г$	Суммарный	Средний	
	$T_{_{\rm I}}$	$T_{_{\rm II}}$		$C_{_{\rm II}}$	C_{Σ}		объем пор, см³/г	диаметр пор, нм
Zn-AC (米C)	225	460	909	389	1298	378	0.143	1.86
Zn-AC (3)	230	475	1092	532	1624	385	0.175	1.96
Zn-AC (BC)	230	465	989	551	1540	384	0.187	1.96

Примечание. 1. $T_{\rm I}, T_{\rm II}$ – температуры максимумов низко- и высокотемпературных пиков на термодесорбционных кривых соответственно; $C_{\rm I}, C_{\rm II}$ и C_{Σ} – концентрации слабых, сильных кислотных центров и их сумма соответственно; $S_{\rm yg}$ – удельная поверхность. 2. Обозн. см. табл. 1.

ТАБЛИЦА З

Катализатор	<i>T</i> , °C	X, %	$Y_{ap}^{}$, %	$S_{_{\mathrm{ap}}},\%$	$S_{_{\rm KP}},~\%$	$S_{_{ m der}}$, %	$S_{_{\rm H_2}}, 0$
Zn-AC (米C)	450	40	2.3	5.7	82.7	9.7	1.9
	500	77	22.3	29.0	61.2	7.8	2.0
	550	97	36.5	37.5	55.0	5.2	2.3
	600	100	40.2	40.2	53.5	3.0	3.3
Zn-AC (3)	450	42	1.6	3.8	89.7	4.8	1.7
	500	86	34.3	39.9	54.7	3.1	2.3
	550	98	39.3	40.1	54.2	2.6	3.1
	600	99	42.7	43.1	50.8	2.4	3.7
Zn-AC (BC)	450	42	1.7	4.1	89.3	4.8	1.8
	500	84	33.9	40.4	54.4	3.0	2.2
	550	98	40.3	41.1	53.0	2.7	3.2
	600	99	42.9	43.3	50.7	2.3	3.7

Π.....

Примечание. X – конверсия пропана; Y_{ар} – выход ароматических углеводородов; $S_{\rm ap}$, $S_{\rm kp}$ и $S_{\rm дer}$ – селективность образования продуктов ароматизации, крекинга и дегидрирования соответственно; $S_{\rm H_2}$ – селективность образования водорода. 2. Обозн. см. табл. 1.

использованием разных источников кремния, представлены в табл. 3. Видно, что все исследуемые образцы проявляют достаточно высокую активность в процессе превращения пропана в АрУ. Основными продуктами превращения пропана на исследуемых катализаторах являются газообразные (С₁-С₂) и жидкие углеводороды. Последние представляют собой смесь АрУ, состоящую преимущественно из бензола, толуола и ксилолов (БТК-фракция), кроме того, в небольшом количестве содержатся алкилбензолы С_{о+}, нафталин и алкилнафталины. Побочные продукты представлены газообразными углеводородами - метаном и этаном, в незначительном

Рис. 3. Зависимость селективности образования ароматических углеводородов (АрУ) на Zn-алюмосиликатах от температуры процесса превращения пропана. Обозн. см. рис. 1.

количестве присутствуют водород и олефины С₂-С₄, а также непревращенный пропан. С повышением температуры реакции на всех образцах катализаторов наблюдается увеличение степени превращения пропана, более того, при температуре реакции $T \ge 550$ °C пропан превращается практически полностью. Наибольшей активностью и селективностью в отношении образования АрУ обладает образец Zn-AC (БС), полученный на основе белой сажи. Выход АрУ на нем достигает 42.9 % при температуре 600 °С. Цинкалюмосиликат Zn-AC (3), синтезированный с использованием золя, не отличается по общей активности от образца Zn-AC (БС), однако немного уступает ему по селективности образования ароматических углеводородов. Это свидетельствует о том, что использование при синтезе соответствующих источников кремния приводит к образованию близкого количества одинаковых по природе активных центров, с участием которых происходит активация молекул пропана и дальнейшее превращение промежуточных продуктов в ароматические соединения, что подтверждается данными исследований кислотных свойств этих катализаторов. Образец Zn-AC (ЖС), полученный с использованием жидкого стекла, проявляет наименьшую среди исследуемых катализаторов активность в образовании ароматических углеводородов из пропана.

На рис. 3 приведена зависимость селективности образования АрУ на исследуемых катализаторах от температуры процесса. Видно, что для всех образцов характерно увеличение селективности образования АрУ с ростом температуры процесса. Для образца Zn-AC (ЖС) се-

ТАБЛИЦА 4	1
-----------	---

Состав газообразных	продуктов	превращения	пропана
на Zn-алюмосиликат	ax (T = 550)	°C)	

Катализатор	Состав газообразных продуктов, об. %				
	H_2	CH_4	$\rm C_2H_6$	Алкены $\mathrm{C_2-C_4}$	Алканы $C_3 - C_4$
Zn-AC (釆C)	3.6	57.2	27.1	7.9	4.2
Zn-AC (3)	5.0	62.2	25.3	4.2	3.3
Zn-AC (BC)	5.3	61.4	25.5	4.4	3.4

Примечание. Обозн. см. табл. 1.

лективность растет достаточно плавно. В то же время для образцов Zn-AC (З) и Zn-AC (БС) при повышении температуры от 450 до 500 °C отмечается резкий рост селективности образования ApУ, а дальнейшее повышение температуры до 550 и 600 °C приводит лишь к небольшому увеличению этого показателя.

Исследования состава образующихся газообразных и жидких продуктов превращения пропана на Zn-алюмосиликатах, приготовленных с использованием разных источников кремния, показали, что по качественному составу они не отличаются друг от друга, но несколько различаются по количественному содержанию отдельных компонентов. В табл. 4 приведены данные по составу газообразных продуктов превращения пропана на Zn-алюмосиликатах. Наибольшая доля приходится на метан и этан – основные продукты крекинга пропана, при этом на образце Zn-AC (ЖС) образуется меньше метана и больше этана по сравнению с катализаторами Zn-AC (З) и Zn-AC (БС). Можно отметить относительно низкое содержание олефинов в продуктах реакции. Это свидетельствует о том, что данные соединения являются промежуточными продуктами, которые активно вступают в дальнейшие взаимодействия, приводящие к образованию АрУ.

На рис. 4 представлены данные по влиянию источника кремния на состав жидких продуктов превращения пропана на Zn-алюмосиликатах. Видно, что по содержанию индивидуальных АрУ эти продукты заметно различаются. Наибольшее количество бензола и толуола образуется на катализаторе Zn-AC (ЖС). Состав продуктов, образующихся на катализаторах Zn-AC (З) и Zn-AC (БС), изменяется незначительно, лишь на последнем катализаторе

Рис. 4. Влияние источника кремния на состав жидких продуктов превращения пропана на Zn-алюмосиликатах (T = 550 °C). Обозн. см. рис. 1.

несколько меньше образуется бензола и больше – алкилнафталинов. Различия в составе газообразных и жидких продуктов реакции обусловлены разной скоростью протекания на исследуемых катализаторах отдельных стадий процесса, т. е. природа носителя влияет на каталитические свойства Zn-AC.

Суммируя полученные результаты, можно построить следующую гистограмму (рис. 5). Анализ данных позволяет заключить, что Zn-AC, синтезированные из щелочных алюмокремнегелей с использованием разных источников кремния, несколько различаются по своим физико-химическим и каталитическим свойствам в процессе превращения пропана, проявляя достаточно высокую активность в образовании целевого продукта. Из исследованных образцов наибольшей активностью в процессе конверсии пропана в АрУ обладает катализатор Zn-AC (БС). Выход АрУ на нем при температуре реакции 550 °C достигает 40,3 % при конверсии исходного сырья 98 %.

ЗАКЛЮЧЕНИЕ

При использовании разных источников кремния в процессе гидротермального синтеза получены Zn-алюмосиликаты, несколько отличающиеся друг от друга структурными свойствами, распределением и соотношением кислотных центров разной природы. Каталитические испытания синтезированных образцов показали, что все они обладают высокой активностью и селективностью в процессе превращения пропана в ароматические соединения, а наибольшей активностью характеризуется Zn-алюмосиликат, синтезированный с использованием белой сажи в качестве источника кремния. Основным критерием выбора кремнийсодержащего соединения в качестве источника катиона кремния при синтезе Zn-алюмосиликаты будет являться его чистота, доступность и стоимость.

Работа выполнена в рамках государственного задания ИХН СО РАН, финансируемого Министерством науки и высшего образования Российской Федерации.

СПИСОК ЛИТЕРАТУРЫ

- 1 Дергачев А. А., Лапидус А. Л. Каталитическая ароматизация низших алканов // Рос. хим. журн. (Журн. Росс. хим. о-ва им. Д. И. Менделеева). 2008. Т. 52, № 4. С. 15–21.
- 2 Боженкова Г. С., Хомяков И. С., Герасина Т. А. Структурно-пористые, кислотные и каталитические свойства высококремнеземных цеолитов, синтезированных с различными темплатами, в процессе конверсии пропан-бутановой фракции // Журн. приклад. химии. 2016. Т. 89, № 2. С. 230-234.
- 3 Лищинер И. И., Малова О. В., Тарасов А. Л. Конверсия ПНГ в ароматические углеводороды // Катализ в промышленности. 2018. № 5. С. 45–52.
- 4 Caeiro G., Carvalho R. H., Wang X., Lemos M. A. N. D. A., Lemos F., Guisnet M., Ribeiro F. Ramoa. Activation of $C_2^{-}C_4^{-}$ alkanes over acid and bifunctional zeolite catalysts // J. Mol. Catal. A: Chem. 2006. Vol. 255, No. 1–2. P. 131–158.
- 5 Восмериков А. А., Восмерикова Л. Н., Данилова И. Г., Восмериков А. В. Получение ароматических углеводородов из С₃, С₄-алканов на цеолитных катализаторах // Журн. Сиб. федер. ун-та. Серия: Химия. 2019. Т. 12, № 1. С. 144–154.
- 6 Кутепов Б. И., Белоусова О. Ю. Ароматизация углеводородов на пентасилсодержащих катализаторах. М.: Химия, 2000. 95 с.
- 7 Xiao H., Zhang J., Wang X., Zhang Q., Xie H., Han Y., Tan Y. A highly efficient Ga/ZSM-5 catalyst prepared by formic acid impregnation and *in situ* treatment for propane aromatization // Catal. Sci. Technol. 2015. Vol. 5, No. 8. P. 4081–4090.
- 8 Баррер Р. Гидротермальная химия цеолитов. М.: Мир, 1985. 420 с.
- 9 Caicedo-Realpe R., Pérez-Ramírez J. Mesoporous ZSM-5 zeolites prepared by a two-step route comprising sodium aluminate and acid treatments // Microporous and Mesoporous Materials. 2010. Vol. 128. P. 91-100.