УДК 539.375

ДОСТАТОЧНЫЙ ДИСКРЕТНО-ИНТЕГРАЛЬНЫЙ КРИТЕРИЙ ПРОЧНОСТИ ПРИ ОТРЫВЕ

В. М. Корнев, В. Д. Кургузов

Институт гидродинамики им. М. А. Лаврентьева СО РАН, 630090 Новосибирск

Моделируется поведение атомной структуры в окрестности вершины трещины. Изучается потеря устойчивости и закритическое деформирование трехатомной ячейки в плотноупакованном слое атомов при растяжении. Для макротрещин в монокристаллах введено понятие обобщенного вектора Бюргерса. Предложен достаточный дискретноинтегральный критерий прочности для трещин нормального отрыва, когда поля напряжений имеют сингулярную составляющую. При формулировке указанного критерия в соответствии с гибридной моделью В. В. Новожилова используется новый класс решений, который отличается от решений, применяемых при формулировке классического достаточного критерия прочности. Предложенный достаточный критерий допускает предельный переход к необходимому критерию, когда в пределе можно пренебречь энергетическими характеристиками закритического деформирования ячейки. Величины критических нагрузок, полученные в соответствии с достаточным критерием, существенно отличаются от полученных в соответствии с необходимым критерием, что позволяет описать эффект Ребиндера.

Введение. При исследовании прочности и разрушения твердых тел все большее значение придается подходам, связанным с дискретным строением материала. В. В. Новожилов, рассматривая разрушение идеального кристаллического твердого тела с трещиной как дискретный процесс [1], для оценки прочности хрупкого упругого тела в окрестности сингулярных точек поля напряжений предложил осреднять последние в пределах межатомного расстояния и сравнивать их с теоретической прочностью на разрыв. Кроме того, он ввел необходимый и достаточный критерии хрупкой прочности [1]. Реальные кристаллы содержат дефекты, наиболее распространенными среди которых являются вакансии. В работе [2] предложены дискретно-интегральные критерии для трех простейших типов трещин (по терминологии В. В. Новожилова, это необходимые критерии). Аналогичный подход развит и для сложного напряженно-деформированного состояния при пропорциональном нагружении [3], причем пределы осреднения напряжений зависят от наличия, размеров и положения дефектов в окрестности вершины трещины. В работах [4, 5] подход В. В. Новожилова использован для получения достаточных критериев для трещин нормального отрыва. Показано, что если величину раскрытия трещины определять с использованием реальных потенциалов межатомного взаимодействия для цепочек атомов, то величина теоретической прочности кристаллического тела не зависит от конкретного кристаллического строения твердого тела в окрестности вершины трещины.

Для необходимых критериев соответствующие осредненные напряжения не превосходят теоретических прочностей на разрыв или сдвиг. При выполнении необходимого критерия ближайшая к вершине кристаллическая структура находится в критическом состоянии. Однако после исчерпания несущей способности ближайшей к вершине кристаллической структуры возможно дополнительное догружение тела с трещиной за счет

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (код проекта 98-01-00692).

закритического деформирования этой структуры и докритического деформирования следующей кристаллической структуры, когда в окрестности вершины трещины отсутствуют вакансии и примесные атомы. При выполнении достаточного критерия имеет место катастрофическое разрушение системы.

Рассмотрим более подробно классические достаточные критерии [6–9]. Если в континуальной модели воспользоваться представлениями решений для напряжений на продолжении острой трещины y = 0 через коэффициент интенсивности напряжений (КИН) $K_{\rm I}^0$, то с точностью до величин высшего порядка малости в окрестности вершины трещины для линейной задачи можно записать

$$\sigma_y(x,0) \simeq \sigma_\infty + \frac{K_{\rm I}^0}{(2\pi x)^{1/2}},$$
(1)

где σ_{∞} — характерное напряжение, заданное на бесконечности либо на контуре ограниченного тела. Представляют интерес два случая:

$$K_{\rm I}^0 = 0; \tag{2}$$

$$K_{\rm I}^0 > 0.$$
 (3)

В классических критериях [6, 7] фактически используется ограничение (2). Трещина в рамках модели Леонова — Панасюка — Дагдейла образует своеобразный "носик", а профиль модельной трещины имеет точку перегиба, в которой берега трещины имеют вертикальную касательную. Ограничение (2) имеет смысл рассматривать только в случае развитой пластичности [9]. Следует отметить, что никакая кристаллическая структура не может выдержать без потери устойчивости изменение геометрии берегов трещины в окрестности точек перегиба при выполнении ограничения (2). Достаточно подробное изложение концепции В. В. Новожилова, когда выполняется ограничение (2), приведено в [10].

Ниже рассматривается ограничение (3). По мнению авторов, в этом случае удобно пользоваться подходом В. В. Новожилова [10].

1. Механические модели, формулировка достаточного критерия для трещин нормального отрыва. Изучается поведение под нагрузкой тела, имеющего внутреннюю макротрещину. Пусть плоская макротрещина с прямолинейным фронтом не нарушает в макрообъеме структуру монокристалла [11]. Рассматривается плотноупакованный слой атомов, имеющий макротрещину и вакансии (рис. 1). Считается, что при образовании макротрещины из ряда удалена часть атомов, а непосредственно перед вершиной имеются вакансии, на рис. 1 отмеченные крестиком. На рис. 2 представлены схема нагружения трехатомной ячейки и типичная кривая деформирования при растяжении трехатомной ячейки: $\sigma_m = \max \sigma(v)$ для нормальных напряжений; \mathbf{F} — вектор усилий, причем $f = |\mathbf{F}|$,

 $f_m = \max f$; от усилий к напряжениям можно перейти, используя осреднение для гибридной модели в механике разрушения; v — смещения вдоль оси Oy; v_m — смещение, соответствующее f_m ; v_c — радиус области межатомных взаимодействий для трехатомной ячейки, который вычисляется с использованием энергетических соображений по правилу

$$\int_{v_m}^{\infty} f(v) \, dv = (v_c - v_m) f_m,\tag{4}$$

если известна кривая деформирования трехатомной ячейки f = f(v) при растяжении (на рис. 2 заштрихованная область под кривой равна площади заштрихованного прямоугольника). В соотношении (4) несобственный интеграл первого рода сходится, так как функция f(v) при $v \to \infty$ быстро убывает, когда используются реальные физические потенциалы межатомного взаимодействия.

Смоделируем трещину двусторонним разрезом. На рис. 3 приведены модель трещины нормального отрыва (Δ — нагруженный участок разреза) и схема раскрытия трещины. Для координаты $x = -\Delta$ раскрытие трещины равно V. Возможные потери устойчивости атомных структур в окрестности точки $x = -\Delta$ в данной работе не обсуждаются.

Рассматривается наиболее слабый слой атомов, расположенный перпендикулярно прямому фронту плоской острой макротрещины длиной 2*l*. Предлагается достаточный дискретно-интегральный критерий квазихрупкой прочности для трещин нормального от-

Рис. 3

рыва:

$$\frac{1}{kr_e} \int_{0}^{nr_e} \sigma_y(x,0) \, dx \leqslant \sigma_m, \quad x \ge 0; \qquad V = \frac{x+1}{G} \, K_1^0 \, \sqrt{\frac{\Delta}{2\pi}} \leqslant V^*, \quad x \le 0.$$
(5)

Здесь $\sigma_y(x,0)$ — нормальные напряжения в вершине трещины в континуальной модели, имеющие интегрируемую особенность; Oxy — прямоугольная система координат, начало которой расположено в правой вершине трещины; r_e — расстояние между центрами атомов; n и k — числа, причем $n \ge k$ (k — число межатомных связей); nr_e — интервал осреднения; σ_m — теоретическая прочность твердых тел на разрыв [12]; V — удвоенные смещения берегов трещины; $V^* = v_c - v_m$ — критическое раскрытие трещины нормального отрыва; $x = 3 - 4\nu$ или $x = (3 - \nu)/(1 + \nu)$ соответственно для плоской деформации и плоского напряженного состояния; ν — коэффициент Пуассона; G — модуль сдвига. Напряжения σ_y для континуальной модели после осреднения с учетом поврежденности материала сравниваются с теоретической прочностью идеальных кристаллов σ_m в дискретной модели. Длину нагруженного участка разреза Δ , используемую при формулировке достаточного критерия (5), можно определить, используя как конкретное кристаллическое строение материала в окрестности вершины трещины, так и реальные физические потенциалы межатомного взаимодействия. Взаимодействие между берегами трещины имеет место только на нагруженном участке разреза.

Очевидно, что $V \to 0$ при $\Delta \to 0$, и достаточный критерий (5) становится необходимым [2, 3]. Пределы осреднения напряжений и в необходимом, и в достаточном критериях зависят от наличия, размера и положения дефектов кристаллической решетки в окрестности вершины трещины. Для плотноупакованного слоя атомов, представленного на рис. 1, n = 2, k = 1. Величина этих осредненных напряжений не должна превышать теоретическую прочность σ_m . Отношение k/n характеризует поврежденность сплошного материала перед вершиной трещины. Прежде чем рассмотреть аналогичный параметр для интервала $[-\Delta; 0]$ для материала, находящегося в предразрушенном состоянии, нужно проверить, выполняется ли ограничение $\Delta/r_e \ge 2$.

Пусть задана острая трещина длиной $2l_{nk}^0$ такая, что $\Delta = 0$. При последовательном догружении не происходит подрастания трещины до нагрузок $\sigma_{\infty} < \sigma_{\infty}^0$ (σ_{∞}^0 — критические напряжения для острых трещин, полученные по необходимым критериям [2, 3], которым соответствует длина трещины $2l_{nk}^0$). Когда нагрузка превышает критические напряжения для необходимого критерия ($\sigma_{\infty} > \sigma_{\infty}^0$), происходит страгивание трещины и начинают "работать" в закритическом режиме трехатомные ячейки, ближайшие к вершине трещины; одновременно формируются силовые связи в окрестности вершины трещины и сдвигается начало отсчета в модели, показанной на рис. 3. Из-за действующих силовых связей имеет место устойчивый рост трещины $2l_{nk}^0 < 2l_{nk} < 2l_{nk}^{*0}$ до определенного уровня нагружения σ_{∞}^{*0} (σ_{∞}^{*0} — критические напряжения для острых трещин длиной l_{nk}^{*0} , полученные по достаточному критерию). При постепенном догружении таком, что $\sigma_{\infty}^0 < \sigma_{\infty} < \sigma_{\infty}^{*0}$, раскрытие трещины увеличиваются и нагрузки: $\Delta < \Delta^*$ (Δ^* — критическая длина нагруженного участка разреза). Когда длина нагруженного участка разреза Δ совпадает с критической величиной Δ^* , т. е. $V = V^*$, устойчивый рост трещины сменяется неустойчивым. Получается своеобразная ловушка для распространяющихся трещин в квазихрупких материалах.

Получим соотношения, связывающие критические параметры $K_{\rm I}^{*0}$ и Δ^* для острых трещин. После соответствующих преобразований имеем

$$\frac{K_{\rm I}^{*0}}{\sigma_{\infty}^{*0}\sqrt{r_e}} = \sqrt{\frac{\pi}{2}n} \left(\frac{\sigma_m}{\sigma_{\infty}^{*0}}\frac{k}{n} - 1\right), \qquad \Delta^* = 2\pi \left(\frac{G}{x+1}\frac{V^*}{K_{\rm I}^{*0}}\right)^2. \tag{6}$$

Первое соотношение в (6) с точностью до обозначений совпадает с критическим КИНом необходимого критерия хрупкой прочности [2].

В соответствии с предлагаемой моделью КИН $K_{\rm I}^0$ достаточного критерия выражается в виде суммы двух слагаемых

$$K_{\rm I}^0 = K_{\rm I\infty}^0 + K_{\rm I\Delta}^0, \tag{7}$$

где $K_{I\infty}^0$ — КИН, порождаемый напряжениями σ_{∞} ; $K_{I\Delta}^0$ — КИН, порождаемый напряжениями σ_m , действующими в окрестности вершины трещины. Напомним, что в соответствии с моделью трещины нормального отрыва (рис. 3) КИН $K_{I\infty}^0$ выражается через напряжения σ_{∞} , заданные на бесконечности, и полудлину l_{nk} внутренней трещины, а КИН $K_{I\Delta}^0$ — через напряжения σ_m , полудлину l_{nk} трещины и длину нагруженного участка разреза Δ следующим образом: $K_{I\infty}^0 = \sigma_{\infty} \sqrt{\pi l_{nk}}, K_{I\Delta}^0 = -\sigma_m \sqrt{\pi l_{nk}} (1 - (2/\pi) \arcsin (1 - \Delta/l_{nk}))$. Если напряжения σ_{∞} обусловливают гладкую часть решения в окрестности вершины трещины (см. (1)), то напряжения σ_m , заданные на противоположных берегах разреза-трещины, самоуравновешены и не обусловливают ее. С учетом направления действия растягивающих напряжений σ_{∞} , заданных на бесконечности, а также сжимающих напряжений σ_m , определенных на отрезке $[-\Delta; 0]$, в соответствии с достаточным критерием окончательно получим K_I^0 для внутренних трещин нормального отрыва (см. (7)):

$$K_{\rm I}^0 = \sigma_{\infty} \sqrt{\pi l_{nk}} - \sigma_m \sqrt{\pi l_{nk}} [1 - (2/\pi) \arcsin\left(1 - \Delta/l_{nk}\right)] > 0.$$
(8)

В формуле (8) $0 \leq \Delta \leq \Delta^*$, $2l_{nk}^0 \leq 2l_{nk} \leq 2l_{nk}^{*0}$. Очевидно, что при $\Delta = 0$ КИН, полученный в соответствии с достаточным критерием, становится равным КИНу, полученному в соответствии с необходимым критерием, так как в этом случае $K_{I\Delta}^0 = 0$.

Получим оценки для величины Δ . Соотношение (8) может быть существенно упрощено, если длина нагруженного участка $[-\Delta; 0]$ намного меньше полудлины трещины, т. е. $\Delta/l_{nk} \ll 1$. Тогда имеем $\arcsin(1 - \Delta/l_{nk}) \simeq \pi/2 - \sqrt{2\Delta/l_{nk}}$. Из достаточного критерия (5) после соответствующих преобразований получим квадратное уравнение для безразмерного параметра $\sqrt{\Delta/l_{nk}}$

$$\left(\sqrt{\frac{\Delta^*}{l_{nk}^{*0}}}\right)^2 - \frac{\pi}{2\sqrt{2}} \frac{\sigma_{\infty}^{*0}}{\sigma_m} \sqrt{\frac{\Delta^*}{l_{nk}^{*0}}} + \frac{\pi}{2(x+1)} \frac{V^*}{l_{nk}^{*0}} \frac{G}{\sigma_m} = 0.$$

Пренебрегая величиной Δ^*/l_{nk}^{*0} по сравнению с единицей, получим простое выражение для меньшего корня квадратного уравнения

$$\sqrt{\frac{\Delta^*}{l_{nk}^{*0}}} \simeq \frac{\sqrt{2}}{x+1} \frac{V^*}{l_{nk}^{*0}} \frac{G}{\sigma_{\infty}^{*0}}.$$
(9)

Замечание. Если ограничение $\Delta^*/l_{nk}^{*0} \ll 1$ не выполняется, из достаточного критерия (5) или соотношения (7) получается трансцендентное уравнение для определения Δ^*/l_{nk}^{*0} . Особые трудности при решении этого уравнения отсутствуют, если оно имеет положительные корни меньше единицы.

Подставив (9) в (8), получим критический КИН $K_{\rm I}^{*0}$ острой внутренней трещины нормального отрыва, если $\Delta^*/l_{nk}^{*0} \ll 1$:

$$\frac{K_{\rm I}^{*0}}{\sigma_{\infty}^{*0}\sqrt{\pi l_{nk}^{*0}}} = 1 - \frac{\sigma_m}{\sigma_{\infty}^{*0}} \frac{2\sqrt{2}}{\pi} \sqrt{\frac{\Delta^*}{l_{nk}^{*0}}}.$$
(10)

Рис. 4

Таким образом, кривая разрушения по достаточному критерию и критическая длина острой внутренней трещины нормального отрыва при заданном уровне нагружения записываются в виде

$$\frac{\sigma_{\infty}^{*0}}{\sigma_m} = \left(\frac{n}{k} + \frac{\sqrt{n}}{k}\sqrt{\frac{2l_{nk}^{*0}}{r_e}}\right)^{-1} \left(1 + \frac{4\sqrt{n}}{\pi k}\sqrt{\frac{\Delta^*}{r_e}}\right);\tag{11}$$

$$\frac{2l_{nk}^{*0}}{r_e} = \left[\frac{\sigma_m}{\sigma_\infty^{*0}} \left(1 + \frac{4\sqrt{n}}{\pi k}\sqrt{\frac{\Delta^*}{r_e}}\right) - \frac{n}{k}\right] \frac{k^2}{n}.$$
(12)

Уравнения кривых разрушения по достаточному критерию (11) отличаются от уравнений кривых разрушения по необходимому критерию [2, 3] только последним множителем, зависящим от длины нагруженного участка разреза. В соотношениях (10)–(12) возможен предельный переход, когда КИН, длина нагруженного участка разреза и длина трещины стремятся к нулю.

Сопоставим критические нагрузки, полученные по необходимым и достаточным критериям для хрупких материалов для одних и тех же длин трещин:

$$\frac{\sigma_{\infty}^{*0}}{\sigma_{\infty}^{0}} = 1 + \frac{4\sqrt{n}}{\pi k} \sqrt{\frac{\Delta^{*}}{r_{e}}}.$$
(13)

Эти критические нагрузки существенно отличаются. Различие в величинах критических нагрузок можно объяснить эффектом Ребиндера [13–15].

На рис. 4 схематически показаны устойчивый (кривая 1) и неустойчивый (кривая 2) участки роста трещин, а также кривая разрушения, полученная по необходимым критериям [2, 3] (кривая 3). На устойчивом участке образовавшиеся системы воспринимают увеличивающуюся нагрузку, так как $\sigma_{\infty}^{*0} > \sigma_{\infty}^{0}$, в результате происходит подрастание трещины, поскольку $l_{nk}^{0} < l_{nk}^{*0}$.

2. Оценки прочности трехатомной ячейки. Моделируется поведение атомной структуры в окрестности вершины трещины. Изучается потеря устойчивости трехатомной ячейки в плотноупакованном слое атомов при растяжении. Рассмотрим деформирование трехатомной ячейки, изображенной на рис. 2. Внешнее воздействие характеризуется силой F, приложенной к третьему атому ячейки. Действие межатомных сил предполагается центральным с потенциалом взаимодействия Морзе [12]

$$U(r) = D[e^{-2\alpha(r-r_e)} - 2e^{-\alpha(r-r_e)}],$$

Рис. 5

где r — расстояние между атомами; r_e — расстояние между атомами в положении равновесия; D, α — константы. При $r = r_e$ (равновесное состояние) центральная сила взаимодействия атомов равна нулю, при $r < r_e$ между атомами действует сила отталкивания (отрицательная), при $r > r_e$ — сила притяжения (положительная), которая достигает максимума f_m на некотором расстоянии r_m , так что при дальнейшем удалении атомов центральная сила их взаимодействия ослабевает и на расстоянии $2r_e$ уменьшается на порядок по сравнению с максимальным значением. Первая производная от потенциала Морзе дает выражение центральной силы

$$f(r) = \frac{\partial U(r)}{\partial r} = 2D\alpha [e^{-\alpha(r-r_e)} - e^{-2\alpha(r-r_e)}],$$

откуда $r_m = r_e + \ln (2/\alpha), f_m = D\alpha/2.$

Нелинейная задача по деформированию атомной решетки решается методом конечных элементов [16]. Трехатомная ячейка представляет собой стержневую конструкцию, в которой узлы 1 и 2 закреплены, а узел 3 имеет две степени свободы. Конструкция под действием внешних сил подвергается растяжению. При численном решении задачи по деформированию атомной ячейки использовалась пошаговая процедура [17]. Из-за больших смещений и поворотов физически нелинейная задача деформирования атомной решетки становится также геометрически нелинейной. Решения подобных задач содержат собственные состояния типа максимальной нагрузки. Основная трудность решения таких задач состоит в том, что в качестве монотонно возрастающего параметра деформирования нельзя использовать внешнюю силу, действующую на атомную решетку. Второй особенностью, осложняющей решение задачи, является вырожденность касательной матрицы жесткости при достижении максимальной нагрузки. В этом случае итерационная процедура Ньютона — Рафсона не дает сходимости к решению задачи. Для преодоления указанных выше трудностей в [17] параметр внешней силы считается неизвестной величиной, а в качестве дополнительного уравнения задается длина дуги в (\boldsymbol{U},λ) -пространстве $(\boldsymbol{U}$ — вектор перемещений, λ параметр внешней силы).

Численные расчеты проводились при следующих безразмерных значениях констант потенциала межатомного взаимодействия: $r_e = 1$, D = 1,7, $\alpha = 2 \div 10$. Радиус области межатомных взаимодействий v_c определялся по формуле (4). На рис. 5 представлена зависимость силы от смещения при растяжении трехатомной ячейки. В табл. 1 приведены полученные в расчетах значения v_m , V^* для некоторых значений параметра α при растяжении. Заметим, что значения V^* не зависят от параметра D. Полученные зависимости

Таблица 1

α	v_m/r_e	V^*/r_e	α	v_m/r_e	V^*/r_e
2	0,400	0,791	7	$0,\!115$	0,239
3	0,269	0,537	8	0,101	0,209
4	0,202	0,408	9	0,090	$0,\!187$
5	0,162	0,329	10	0,081	0,168
6	$0,\!135$	0,276			

сила — смещение подтверждают гипотезу, предложенную в п. 1: в формуле (4) f(v) > 0 и $f(v) \to 0$ при $v \to \infty$.

Найденные значения V^*/r_e позволяют, используя соотношения (9), (13), получить как безразмерные длины нагруженных участков трещин Δ^*/r_e , так и отношения критических нагрузок $\sigma_{\infty}^{*0}/\sigma_{\infty}^0$. Проведенные численные расчеты показали, что в некоторых случаях можно перейти к простым оценкам. Для получения оценок формулу (9) запишем в виде

$$\sqrt{\frac{\Delta^*}{r_e}} \simeq \frac{\sqrt{2}}{x+1} \frac{V^*}{r_e} \sqrt{\frac{r_e}{l_{nk}^{*0}}} \frac{G}{\sigma_{\infty}^{*0}}.$$
(14)

В приближенное равенство (14) входят величины σ_{∞}^{*0} , l_{nk}^{*0} . Для получения оценок воспользуемся следующими соотношениями: 1) если дли́ны трещин по достаточному и необходимому критериям совпадают, для критических нагрузок $\sigma_{\infty}^{*0}(l_{nk}^0) > \sigma_{\infty}^0(l_{nk}^0)$, причем $\sigma_{\infty}^{*0} \to \sigma_{\infty}^0$ при $\Delta \to 0$; 2) если действующие нагрузки таковы, что $\sigma_{\infty}^0 < \sigma_{\infty} < \sigma_{\infty}^{*0}$, то $2l_{nk}^0 < 2l_{nk} < 2l_{nk}^{*0}$, так как $l_{nk}^{*0} = l_{nk}^0 + \Delta^*$. Заменяя в соотношении (14) величины σ_{∞}^{*0} , l_{nk}^{*0} величинами σ_{∞}^0 , l_{nk}^0 , получим приближенное неравенство

$$\sqrt{\frac{\Delta^*}{r_e}} \lesssim \frac{\sqrt{2}}{x+1} \frac{V^*}{r_e} \sqrt{\frac{r_e}{l_{nk}^0}} \frac{G}{\sigma_{\infty}^0}.$$
(15)

В [2, 3] с использованием необходимого критерия получено выражение критических напряжений σ_{∞}^{0} (кривые разрушения) для острой внутренней трещины

$$\frac{\sigma_{\infty}^{0}}{\sigma_{m}} = \left(\frac{n}{k} + \frac{\sqrt{n}}{k}\sqrt{\frac{2l_{nk}^{0}}{r_{e}}}\right)^{-1}.$$

Последнее соотношение упрощается для достаточно длинных трещин, если $2l_{nk}^0/r_e \gg 1$:

$$\frac{\sigma_{\infty}^0}{\sigma_m} \simeq \frac{k}{\sqrt{n}} \sqrt{\frac{r_e}{2l_{nk}^0}}.$$
(16)

Согласно [12] оценки теоретической прочности имеют вид

$$\sigma_m = \eta_1 E,\tag{17}$$

где $0, 1 < \eta_1 < 0, 3$. Подставив (16) и (17) в (15), окончательно получим

$$\sqrt{\frac{\Delta^*}{r_e}} \lesssim \frac{1}{x+1} \frac{V^*}{r_e} \frac{\sqrt{n}}{k(1+\nu)\eta_1}.$$
(18)

Оценки критических нагрузок, полученные по необходимым и достаточным критериям для хрупких материалов для одних и тех же длин длинных трещин, имеют вид

$$\frac{\sigma_{\infty}^{*0}}{\sigma_{\infty}^{0}} \lesssim 1 + \frac{4n}{\pi k^{2}(1+\nu)\eta_{1}} \frac{1}{\omega+1} \frac{V^{*}}{r_{e}}.$$
(19)

α	Плоская деформация		Плоское напряженное состояние		
	Δ^*/r_e	$\sigma_\infty^{*0}/\sigma_\infty^0$	Δ^*/r_e	$\sigma_\infty^{*0}/\sigma_\infty^0$	
2	2,369	3,769	1,955	3,519	
3	1,092	2,880	0,901	2,710	
4	0,630	2,428	0,520	2,299	
6	0,288	1,966	0,238	$1,\!879$	
8	0,165	1,732	$0,\!137$	$1,\!666$	
10	$0,\!107$	1,588	0,088	1,535	

Таблица 2

Результаты расчетов, выполненных по (18), (19) для плоской деформации (массивные тела) и плоского напряженного состояния (тонкие напыленные пленки на податливой подложке), представлены в табл. 2.

При реальных значениях α ($3 \leq \alpha \leq 6$) отношение $\Delta^*/r_e = 1,1 \div 0,23$. При таких длинах нагруженных участков рассматривать поврежденность материала с использованием достаточных критериев смысла не имеет. В табл. 1, 2 приведена зависимость критических нагрузок по достаточному критерию от энергетических характеристик закритического деформирования трехатомных ячеек.

3. Обобщенный вектор Бюргерса. Так как при формулировке достаточного критерия (5) основным дополнительным элементом в отличие от формулировки необходимых критериев в [2, 3] было критическое раскрытие трещины нормального отрыва V^{*}, дадим два эквивалентных определения обобщенного вектора Бюргерса, следуя Коттреллу [18].

Определение 1 (через упругое поле). Рассмотрим макротрещину при заданном нагружении. Выберем достаточно большой замкнутый контур, проходящий по сплошному материалу и пересекающий макротрещину в точке $(-\Delta; 0)$, контур Бюргерса обходится против часовой стрелки. Пусть ds — элемент контура Бюргерса, v — смещение вдоль оси Oy, тогда раскрытие нагруженной трещины нормального отрыва V выражается через контурный интеграл

$$V = \oint \frac{\partial v}{\partial s} \, ds. \tag{20}$$

Соотношение (20) определяет компоненты обобщенного вектора Бюргерса b = (0, V).

Определение 2 (типа Бюргерса — Франка). Рассмотрим макротрещину при заданном нагружении. Образуем замкнутый контур в идеальной кристаллической решетке (макротрещина отсутствует). Пусть этот контур проходит через точку ($-\Delta$; 0). Тогда соответствующий контур, охватывающий вершину макротрещины, окажется разомкнутым, и обобщенным вектором Бюргерса будет вектор **b** идеальной решетки, соответствующий разрыву контура в дефектном кристалле после введения макротрещины.

Предлагаемые определения, отличные от принятых в физике твердого тела, могут быть использованы при формулировке достаточного критерия прочности при обобщенном напряженном состоянии [3]. В этом случае обобщенный вектор Бюргерса имеет две компоненты: $\boldsymbol{b} = (U, V)$.

ЛИТЕРАТУРА

1. Новожилов В. В. О необходимом и достаточном критерии хрупкой прочности // Прикл. математика и механика. 1969. Т. 33, вып. 2. С. 212–222.

- 2. Корнев В. М. Интегральные критерии хрупкой прочности трещиноватых тел с дефектами при наличии вакансий в носике трещины. Прочность компактированных тел типа керамик // ПМТФ. 1996. Т. 37, № 5. С. 168–177.
- Kornev V. M., Kurguzov V. D. A discrete-integral strength criterion for complicated stress states // Fatigue Fracture Engng Materials Structures. 1999. V. 22, N 11. P. 989–995.
- 4. Андреев А. В., Корнев В. М., Тихомиров Ю. В. Обрыв атомных связей в вершине трещины. Потеря устойчивости участка цепочки атомов // Изв. РАН. Механика твердого тела. 1993. № 5. С. 135–146.
- Корнев В. М., Тихомиров Ю. В. О критерии хрупкого разрушения тел с трещиной при наличии дефекта атомной решетки // Изв. РАН. Механика твердого тела. 1994. № 2. С. 185–193.
- 6. **Леонов М. Я., Панасюк В. В.** Развитие мельчайших трещин в твердом теле // Прикл. механика. 1959. Т. 5, № 4. С. 391–401.
- Dugdale D. S. Yielding of steel sheets cotaining slits // J. Mech. Phys. Solids. 1960. V. 8. P. 100–104.
- 8. Баренблатт Г. И. Математическая теория равновесных трещин, образующихся при хрупком разрушении // ПМТФ. 1961. № 4. С. 3–56.
- 9. Керштейн И. М., Клюшников В. Д., Ломакин Е. В., Шестериков С. А. Основы экспериментальной механики разрушения. М.: Изд-во Моск. ун-та, 1989.
- Черных К. Ф. Введение в физически и геометрически нелинейную теорию трещин. М.: Наука. Гл. ред. физ.-мат. лит., 1996.
- 11. Шмитт-Томас К. Г. Металловедение для машиностроения. М.: Металлургия, 1995.
- 12. Макмиллан Н. Идеальная прочность твердых тел // Атомистика разрушения: Сб. ст. 1983– 1985 гг. / Сост. А. Ю. Ишлинский. М.: Мир, 1987. С. 35–103.
- 13. Корнев В. М., Разворотнева Л. И. Сравнительные оценки прочности сухого и влажного кварца при измельчении // ПМТФ. 1998. Т. 39, № 1. С. 138–144.
- 14. **Корнев В. М.** Снижение прочности металлов при хемосорбции водорода в вершине трещины // ПМТФ. 1998. Т. 39, № 3. С. 173–178.
- Kornev V. M., Razvorotneva L. I. Brittle fracture of cracked solids as affected by surfactants // Damage and fracture mechanics. Computer aided assessment and control. Southampton; Boston: Comput. Mech. Publ., 1998. P. 565–574.
- Bathe K.-J. Finite element procedures in engineering analysis. Englewood Cliffs, N. J.: Prentice-Hall, 1982.
- Коробейников С. Н. Применение метода конечных элементов к решению нелинейных задач по деформированию и потере устойчивости атомных решеток. Новосибирск, 1997. (Препр. / РАН. Сиб. отд-ние. Ин-т гидродинамики; № 1-97).
- 18. Коттрелл А. Теория дислокаций. М.: Мир, 1969.

Поступила в редакцию 27/VII 2000 г.