И.Е. Лебедев1, В.Э. Павлов1, П.Л. Тихомиров1, А.М. Пасенко1, У.С. Ефремова2 1Институт физики Земли им. О.Ю. Шмидта РАН, Москва, Россия 2Институт Земной коры СО РАН, Иркутск, Россия
В работе представлены новые
изотопно-геохронологические и палеомагнитные данные, которые поддерживают
представления о более позднем завершении магматизма Охотско-Чукотского
вулканического пояса (ОЧВП) в пределах Восточно-Чукотской фланговой зоны, чем
это считалось ранее, а также позволяют рассчитать новый палеомагнитный полюс
(78.6°N, 212.2°E, A95= 4.7°, N=104) с возрастом ~72 млн лет для окрестностей
месторождения Валунистое. Вместе с палеомагнитными данными, полученными нами
ранее по району месторождения Купол, новые результаты позволяют сделать
следующие выводы: 1. Изученные территории (объект «Купол» и объект
«Валунистое») испытали относительно небольшие, но статистически значимые
смещения относительно Северо-Американской плиты на интервале времени с позднего
мела по современность. 2. Объект «Купол» развернут против часовой стрелки на
величину до первых десятков градусов относительно Северо-Американской плиты, а
объект «Валунистое» смещен относительно этой плиты по палеошироте на расстояние
не менее первых сотен километров. 3. На основе полученных данных в развитие
существующей модели Беринговоморского региона Редфилда и Фитцджеральда (1993)
предлагается схема, согласно которой объекты «Купол» и «Валунистое» принадлежат
пограничной области между Северо-Американской плитой и Беринговоморской плитой,
представленной серией тектонических блоков. При этом тектонический блок, к
которому относится объект «Валунистое», является одним из наиболее западных
блоков, объединяемых в Беринговоморскую плиту, а объект «Купол» относится к
наиболее восточным областям чукотской деформированной окраины
Северо-Американской плиты. Деформации, возникающие в процессе взаимодействия
этих тектонических блоков, в рассматриваемом регионе имеют преимущественно
диффузный характер. Потенциальной областью, в которой могут быть наиболее
сконцентрированы обсуждаемые деформации, представляется Транс-Беринговоморский
сейсмический пояс.
Импактные фации подразделяются на коптогенные (первично-отложенные) и коптомиктовые (переотложенные). Переотложенные импактные фации на сегодняшний день остаются слабо изученными. В работе впервые детально охарактеризованы отложения коптомиктовой фации на примере Карской астроблемы. Рассмотрены структурно-текстурные особенности импактитов на макроуровне и микроскопические структурно-вещественные особенности составных компонентов (литокластов, витрокластов и матрикса) лапиллиевых и агломератовых зювитов района р. Саяха. Согласно проведенной реконструкции обломочные импактиты прибортовой части северо-западного сектора Карской астроблемы были сформированы в условиях фации оползней с бортов кратера на стадии ранней модификации астроблемы. Полученные результаты могут быть использованы для построения модели формирования Карской ударной структуры и для усовершенствования единой модели образования обломочных импактитов крупного метеоритного кратера.
В рамках упругопластической модели поведения среды рассмотрена задача о влиянии неоднородного распределения свойств и геометрии на напряженно-деформированное состояние блочной модели толщиной 500 км под действием силы тяжести. Расчеты осуществлялись в 2D постановке плоского напряженного состояния для профиля прямоугольной и цилиндрической формы, учитывающего кривизну поверхности Земли. Показано, что аномалии напряженно-деформированного состояния и зоны развития необратимой деформации определяются в первую очередь неоднородностью строения, наличием плотностных и реологических аномалий. Геометрия моделей, учет кривизны литосферы существенно влияет в первую очередь на напряженное состояние в коре, где наибольшая сдвиговая прочность определяет развитие необратимой деформации в зависимости от неоднородности среды.
В работе для оценки влияния геометрического фактора на напряженно-деформированное состояние литосферы проведено численное моделирование. Начальная геометрия среды построена на основе сейсмической модели по профилю Кратон, протяженностью 3600 км и глубиной 500 км в прямоугольных и цилиндрических координатах. Проведено сравнение полученных решений.
Рассмотрено изменение напряженно-деформированного состояния при подъеме и погружении блока среды при цилиндрической постановке задачи. Показано, что вертикальные смещения при такой постановке оказывают заметное влияние на горизонтальные напряжения и могут привести к развитию необратимой деформации.
Установлено, что при последовательном послойном наращивании коры отклонение тангенциальных напряжений от горизонтальных у дневной поверхности пренебрежимо мало в случае цилиндрической постановки задачи. Максимальное отклонение при этом достигается в средней части деформированного слоя.
Э.В. Сокол1, С.Н. Кох1, А.С. Половых1, В.В. Шарыгин1, В.В. Ревердатто1, П.В. Хворов2, К.А. Филиппова2, Ю.В. Сереткин1, А.Н. Пыряев1 1Федеральное государственное бюджетное учреждение науки Институт геологии и минералогии им. В.С. Соболева СО РАН, Новосибирск, Россия 2Федеральное государственное бюджетное учреждение науки Институт минералогии УрО РАН, Миасс, Россия
Дополнительные материалы
Ключевые слова: контактовый метаморфизм, спуррит-мервинитовые мраморы, метасоматоз, стабильные изотопы, хлорсиликаты
Влияние Анакитского интрузива на осадки было многостадийным: спуррит-мервинитовый метаморфизм; ранние ретроградные процессы, с которыми связана уникальная по разнообразию минерализация Cl-силикатов (с содержанием Cl до 6-15 мас. %); скарнирование; низкотемпературные гидротермальные процессы. Охарактеризован разрез мраморов, содержащих наиболее высокотемпературные спуррит-мервинитовые парагенезисы, из зоны восточного контакта Анакитского массива, определен их химический, микроэлементный и минеральный состав. Впервые определены составы всех породообразующих минералов, диагностированы акцессорные и ретроградные фазы. Показано, что на пике метаморфизма температура прогрева пород приконтактовой зоны (0.3-5 м) превышала 900°C, а XCO2 достигало 0.3. Впервые полученный тренд δ13C-δ18O аналогичен таковым в контактах, минимально осложненных метасоматозом. Малые различия между величинами δ13C и δ18O (Δδ13C ≤ 2 ‰ V-PDB и Δδ18O ≤ 4 ‰ V-SMOW), характеризующими мраморы и их протолит, доказывают главенствующий вклад процесса метаморфогенной декарбонатизации в изотопное фракционирование C и O. Наряду с минеральными индикаторами они указывают на ограниченную инфильтрацию магматогенных флюидов внутрь вмещающей толщи.
На севере Республики Саха (Якутия) находится Томторский массив ультраосновных пород и карбонатитов. Знаменитые Sc-Y-Nb-REE руды Томторского месторождения уникальны как по гранулометрическим характеристикам вещества - тонкослоистые, криптозернистые, так и по составу - в рудах участка Буранный содержание Nb2O5
в среднем составляет 4.5 %, REE2O3 - 10 %, Y2O3
- 0.75 %, Sc2O3 - 0.06 %. Рудные тела представляют собой стратифицированные пластовые тела, залегающие, как считается, во впадинах на коре выветривания. На основании моделирования формы кровли и подошвы рудного тела, а также перекрывающих его пермских континентальных и юрских морских отложений участка Буранный с использованием программных пакетов QGis и Micromine выявлены структурно-морфологические особенности рудного пласта. Богатые руды участка Буранный залегают на сложной поверхности. В подошве рудного слоя выявлены 2, изолированные друг от друга, депрессии – Северная и Южная, которые усложнены понижениями (впадинами) различного размера. В Северной депрессии насчитывается 10 таких впадин, в Южной – 4. Впадины формируют линейные структуры, совпадающие с разрывными нарушениями, выявленными при разведке. Только четыре впадины в северной части участка заполнены рудным веществом полностью. Остальные заполнены частично или полностью грубообломочными угленосными отложениями пермского возраста. В Южной депрессии доля заполнения впадин рудой самая низкая, а в самой глубокой впадине составляет только 25 %. Предполагается, что различия вызваны тем, что впадины сформировались в различное время. Развивая гипотезу о том, что руды являются осадками термального водоёма, авторы предполагают, что впадины в подошве рудного слоя сформировались в результате гидротермальных (фреатических) взрывов. Подтверждением проявления быстропротекающих высокобарических процессов на массиве Томтор является обнаружение тектонических брекчий.
Г.И. Мишукова1, А.В. Яцук2, В.Ф. Мишуков1 1Федеральное государственное бюджетное учреждение науки Тихоокеанский океанологический институт им. В.И. Ильичева Дальневосточного отделения Российской академии наук (ТОИ ДВО РАН), Владивосток, Россия 2 Международный научный центр в области экологии и вопросов изменения климата, Направление «Геоэкология» Научно-технологический университет «Сириус»: Краснодарский край, федеральная территория «Сириус», пгт. Сириус, Олимпийский пр., д. 1, Россия
Ключевые слова: метан, потоки, концентрации, перенос примесей, залив Петра Великого, Японское море
В работе приведены результаты исследований на акватории залива Петра Великого по данным экспедиции НИС «Академик Опарин» (рейс № 54, октябрь 2017 г.). Потоки метана на границе вода-атмосфера рассчитывались для каждой точки отбора проб по измеренным концентрациям растворенного метана в поверхностном слое морской воды, метана в приводном слое атмосферы, температуре, солености и скорости ветра. Во всех случаях концентрации растворенного метана в поверхностном слое морских вод превышали равновесные с атмосферой значения. Потоки метана с морской поверхности изменялись от 1 до 981 моль/км2·сут, со средним значением 7,1±4,5 моль/км2·сут. Самая интенсивная эмиссия наблюдалась вблизи устья р. Туманная. На склоне континентального шельфа обнаружены газонасыщенные осадки, с включениями субаквальных аутигенных минералов. При анализе геолого-гидрохимической информации определены области, в которых происходит поступление метана из донных отложений. Применение модели полей течений и адвективного переноса примесей на момент проведения работ для исследуемой акватории позволило выявить районы, в которых возможны повышенные концентрации растворенного метана, а также впервые определить местоположение подводного источника разгрузки подземных вод (возможно, элемента палеорусла р. Туманная), который влияет на распределение концентраций растворенного метана и солености в подповерхностных водах залива. Сравнение расчетного переноса метана с экспериментальными результатами показало хорошее пространственное совпадение. Данные расчетов свидетельствуют о том, что за счет приливно-отливных течений возможно образование не только локальных максимумов концентраций и потоков метана с морской поверхности на отдельных участках залива, но и перенос в пелагические воды западной части Центральной котловины Японского моря.
В.А. Конторович1 1Федеральное государственное бюджетное учреждение науки Институт нефтегазовой геологии и геофизики им. А.А. Трофимука Сибирского отделения Российской академии наук, Новосибирск, Россия
Ключевые слова: Западная Сибирь, рифтогенез, осадочный бассейн, грабен-рифт, межрифтовые блоки, базальты, нефтегазоносность
Статья посвящена строению, условиям формирования и последующему развитию Колтогорско-Уренгойской рифтовой системы, рассекающей территорию Западной Сибири в меридиональном направлении и имеющей протяженность 1925 км. На базе интерпретации потенциальных полей уточнено строение основных рифтов и оперяющей их системы второстепенных грабенов. Сделан вывод о том, что раннетриасовый рифтогенез в значительной мере предопределил архитектуру мезозойско-кайнозойского осадочного чехла Западно-Сибирского осадочного бассейна и оказал существенное влияние на его нефтегазоносность. Над основными грабен-рифтами Колтогорско-Уренгойской системы в структурных планах мезозойских реперных уровней был сформирован Колтогорско-Уренгойской мегажелоб – надпорядковая вытянутая в меридиональном направлении линейная депрессия, протягивающаяся через всю Западную Сибирь. В южной части бассейна более интенсивное мезозойско-кайнозойское погружение Колтогорско-Уренгойского и Усть-Тымского грабен-рифтов предопределило формирование в осадочном чехле крупных надрифтовых депрессионных зон Среднепуровского желоба, Колтогорского мегапрогиба, Нюрольской и Усть-Тымской мегавпадин – основных зон нефтеобразования. Над выступами палеозойского фундамента были сформированы положительные структуры I и II порядка – Северный, Нижневартовский, Александровский, Каймысовский своды; Етыпуровский, Вынгапуровский, Средневасюганский и Пудинский мегавалы – основные зоны нефтенакопления. На севере бассейна над межрифтовыми блоками в рельефах меловых горизонтов были сформированы антиклинальные структуры-ловушки, контролирующие апт-альб-сеноманские газовые залежи.
Е.В. Деев1,2, А.А. Дучков1,2, Л.Ю. Епонешникова1, П.А. Дергач1,2, А.А. Заплавнова1, В.В. Потапов1,2, О.В. Сафронов1,2, С.Н. Понасенко1, Р.М. Туктаров3, С.В. Шибаев3 1Институт нефтегазовой геологии и геофизики им. А.А.Трофимука СО РАН, Новосибирск, Россия 2Новосибирский государственный университет, Новосибирск, Россия
3Якутский филиал Федерального исследовательского центра «Единая геофизическая служба РАН», Якутск, Россия
В работе проведен комплексный анализ новых геолого-геофизических данных, полученных для района дельты р. Лена, с целью выявления структурных взаимоотношений между Сибирским кратоном, Верхоянским складчато-надвиговым поясом и Лаптевоморской рифтовой системой. Основными новыми геофизическими данными были результаты магнитотеллурического зондирования (МТЗ, 21 пункт зондирования) и локального сейсмического мониторинга (613 землетрясений в период 2018-2024 гг.). Совместная интерпретация результатов морфоструктурных исследований, данных сейсмической томографии, МТЗ и гравитационных аномалий позволяет сделать следующие выводы. Сейсмическая активность носит мигрирующий характер и приурочена к коровым структурам Верхоянского складчато-надвигового пояса и Южно-Лаптевского рифта. По данным сейсмической томографии с юго-западной стороны прослеживается наличие двух слоев земной коры. Верхний слой (повышенное отношение Vp/Vs) соответствует структурам Верхоянского складчато-надвигового пояса, надвинутым на край Сибирского кратона, на которые наложены структуры Южно-Лаптевского рифта. Нижний слой (пониженное Vp/Vs) погружается с юго-запада на северо-восток до глубин 15-20 км и соответствует докембрийскому кристаллическому фундаменту Сибирского кратона. Такая двухслойная модель коры прослеживается под дельтовыми осадками р. Лена на северо-восток примерно на 30 км, после чего меняется на однослойную с повышенными значениями Vp/Vs. Данные МТЗ позволяют детализировать структуру верхней части коры и согласуются с наличием Южно-Лаптевского рифта между Булкурским и Быковским разломам, а также с наличием Туматского горста на северо-востоке от Быковского разлома. Современная активность разломов фиксируется субвертикальными низкоомными аномалиями удельных электрических сопротивлений по данным МТЗ (флюидонасыщенными зоны) и зонами концентрации очагов землетрясений по сейсмологическим данным, что наблюдается для Булкурского, Нижнеленского, Быковского и Сардахского разломов.
Т.В. Донская1, Д.П. Гладкочуб1, М.О. Сукнёва1, У.С. Ефремова1, О.М. Туркина2, А.Г. Вахромеев1, Е.И. Демонтерова1 1Институт земной коры СО РАН, Иркутск, Россия 2Институт геологии и минералогии им. В.С. Соболева СО РАН, Новосибирск, Россия
Дополнительные материалы
Проведены исследования гнейсов и гранитоидов из трех глубоких скважин, расположенных в центральной части Непско-Ботуобинской антеклизы Сибирского кратона. На основании U-Pb (LA-ICP-MS) геохронологических исследований циркона было установлено, что возраст гранитоидного протолита амфибол-биотитового гнейса из скважины Даниловская-95 составляет 2254±4 млн лет, возраст гранитоида из скважины Могдинская-11 оценивается как 1972±9 млн лет, а гранитоида из скважины Преображенская-14 как 1981±3 млн лет. Протолит гнейса из скважины Даниловская-95 по составу соответствует гранодиориту, близкому по составу граниту I-типа с высокими содержаниями высокозарядных элементов, характеризуется величиной tNd(DM) = 2.7 млрд лет, и мог быть образован в результате плавления архейского корового источника в пределах отдельного блока. Гранитоид из скважины Могдинская-11 имеет характеристики, сопоставимые с гранитами I-типа с низкими концентрациями высокозарядных элементов, и обнаруживает величину tNd(DM) = 2.4 млрд лет. Гранитоид скважины Преображенская-14, имеющий tNd(DM) = 2.6 млрд лет, по составу близок гранитам I-типа с высокими концентрациями высокозарядных элементов. Совокупность данных, а также близкие значения возраста (~2.0 млрд лет) ранее полученные для гнейсогранитов S-типа одной из скважин Даниловской группы, позволяют допускать, что в центральной части Непско-Ботуобинской антеклизы на интервале 1.97–2.00 млрд лет были сформированы гранитоиды с различными геохимическими характеристиками, что возможно в пределах аккреционного орогена, включающего, судя по изотопным характеристикам, блоки с раннепротерозойской и архейской корой. Изученный район представляет собой фрагмент раннепротерозойского Транссибирского орогенного пояса, разделяющего крупные архейские Тунгусский и Анабарский супертеррейны, а его формирование фиксирует раннюю стадию аккреционных процессов и начало становления структуры Сибирского кратона на интервале 1.95–2.00 млрд лет.
Приводятся результаты литолого-минералогических
исследований голоценовых донных отложений гипергалинного (минерализация 150 г/л) озера Большое Яровое, расположенного на
территории Кулундинской степи (юг Западной Сибири). Методы исследования: рентгеновская дифрактометрия (XRD), ИК-спектроскопия, лазерная
гранулометрия, элементный анализ, радиоуглеродное датирование. Мощность вскрытой толщи осадков составляет 483 см. Терригенные минералы на всём протяжении разреза представлены кварцем,
плагиоклазом и слоистыми силикатами (слюдой, хлоритом, смектитом, каолинитом).
Среди аутигенных минералов повсеместно в переменных количествах присутствуют
галит, гипс, карбонаты, следы пирита. Математическим
моделированием XRD профилей в ансамбле карбонатных минералов установлены Mg-кальциты разной степени магнезиальности и арагонит. Проведенные
минералого-кристаллохимические исследования осадков, дополненные результатами
других анализов, позволили получить сведения об эволюции климата Кулундинской
степи в среднем-позднем голоцене. Сравнительно засушливый региональный климат
среднего голоцена в первой половине субатлантика сменяется на более гумидный,
однако ок. 600 л.н. в разрезе вновь появляются признаки его аридизации (Малый
ледниковый период).
Наш сайт использует куки. Продолжая им пользоваться, вы соглашаетесь на обработку персональных данных в соответствии с политикой конфиденциальности. Подробнее