Издательство СО РАН

Издательство СО РАН

Адрес Издательства СО РАН: Россия, 630090, а/я 187
Новосибирск, Морской пр., 2

soran2.gif

Baner_Nauka_Sibiri.jpg


Яндекс.Метрика

Поиск по журналу

Прикладная механика и техническая физика / Journal of Applied Mechanics and Technical Physics

2019 год, номер 3

АНАЛИЗ ИЗГИБА БАЛКИ ТИМОШЕНКО С ТРЕЩИНОЙ С ИСПОЛЬЗОВАНИЕМ НЕЛОКАЛЬНОЙ ГРАДИЕНТНОЙ ТЕОРИИ УПРУГОСТИ

Ч. Фу, С. Ян
"Шанхайский университет, Шанхай, Китай
jerryfc@shu.edu.cn"
Ключевые слова: нелокальная градиентная теория упругости, изгибная жесткость трещины, масштабный параметр, балка с трещиной, краевые условия высшего порядка, nonlocal strain gradient theory, flexibility crack model, scale parameter, cracked beam, higher-order boundary condition
Страницы: 196-206

Аннотация

С использованием нелокальной градиентной теории упругости и модели изгибной жесткости трещины предложена модель балки Тимошенко с трещиной, в которой учитываются размеры балки. Получены выражения для изгибающего момента и перерезывающей силы высших порядков, а также аналитическое решение задачи об изгибе свободно опертой балки с произвольным числом трещин, находящейся под действием равномерной поперечной нагрузки. Исследовано влияние нелокального параметра, характерного линейного размера материала, наличия трещины и гибкости балки на поведение балки при ее изгибе. Установлено, что характерный линейный масштаб материала существенно влияет на поведение балки с трещиной при изгибе, в то время как влияние нелокального параметра градиентной теории менее существенно. Показано, что упрочнение и разупрочнение микробалки с трещиной зависят от обоих масштабных параметров, и в том случае, когда эти параметры равны, поведение микробалки при изгибе отличается от поведения классической балки Тимошенко с трещиной. Установлено, что влияние масштабного эффекта на упрочнение и разупрочнение балки увеличивается с уменьшением гибкости балки.

DOI: 10.15372/PMTF20190320