В данной статье для решения класса параметризованных сингулярно возмущенных задач (СВЗ) предложена взвешенная конечно-разностная схема. В зависимости от выбора весового параметра схема автоматически преобразуется из обратной схемы Эйлера в монотонную гибридную схему. Рассматриваются три вида неоднородных сеток: стандартная сетка Шишкина (S-сетка), сетка Бахвалова-Шишкина (B-S-сетка) и адаптивная сетка. Показана равномерная сходимость этих методов по отношению к параметру возмущения для всех трех видов сеток. Скорость сходимости имеет первый порядок для обратной схемы Эйлера и второй порядок для монотонной гибридной схемы. Кроме того, предлагаемый метод обобщается для параметризованной задачи с граничными условиями смешанного типа и показана его равномерная сходимость. Приводятся результаты численных экспериментов для демонстрации эффективности предлагаемых схем, которые свидетельствуют об оптимальности оценок.
Наш сайт использует куки. Продолжая им пользоваться, вы соглашаетесь на обработку персональных данных в соответствии с политикой конфиденциальности. Подробнее