Липшицево отображение и его применение к анализу сходимости варианта метода Ньютона
М.Х. Рашид1,2
Ключевые слова: многозначные отображения, липшицевы отображения, обобщенные уравнения, вариант метода Ньютона, полулокальная сходимость
Страницы: 193-212
Аннотация
Пусть X и Y - банаховы пространства. Пусть f : Ω → Y - дифференцируемая по Фреше функция на открытом подмножестве Ω в X, а F - многозначное отображение с замкнутым графиком. Рассмотрим следующее обобщенное уравнение: 0in f(x)+ F(x). В статье исследуется вариант метода Ньютона для решения обобщенного уравнения (1) и анализируются полулокальная и локальная сходимость этого метода при более слабых условиях, чем условия Жан-Алексиса и Петруса [13]. Показано, что этот вариант метода Ньютона сходится сверхлинейно, когда производная Фреше от f является (L,p)-Гельдер непрерывной и (f+F)-1-липшицевой в контрольной точке. Кроме того, даны применения этого метода к задаче нелинейного программирования и вариационному неравенству. Приведены численные эксперименты для иллюстрации теоретических результатов.
Наш сайт использует куки. Продолжая им пользоваться, вы соглашаетесь на обработку персональных данных в соответствии с политикой конфиденциальности. Подробнее