Издательство СО РАН

Издательство СО РАН

Адрес Издательства СО РАН: Россия, 630090, а/я 187
Новосибирск, Морской пр., 2

soran2.gif

Baner_Nauka_Sibiri.jpg


Яндекс.Метрика

Поиск по журналу

Сибирский журнал вычислительной математики

2021 год, номер 3

О блоке фильтров в сплайн-вейвлетном преобразовании на неравномерной сетке

"А.А. Макаров1, С.В. Макарова2"
"1Санкт-Петербургский государственный университет, Санкт-Петербург, Россия
a.a.makarov@spbu.ru
2Санкт-Петербургский государственный университет аэрокосмического приборостроения, Санкт-Петербург, Россия
sdrobot@mail.ru"
Ключевые слова: -сплайн, минимальные сплайны, вейвлеты, сплайн-вейвлеты, вейвлетное разложение, блок фильтров
Страницы: 299-311

Аннотация

В работе получено явное представление блока фильтров для построения вейвлетных преобразований пространств линейных минимальных сплайнов на неравномерных сетках на отрезке. Построены операторы декомпозиции и реконструкции, доказана их взаимная обратность. Найдены соотношения, связывающие соответствующие фильтры. Установлен факт разреженности матриц декомпозиции и реконструкции. Применяемый в работе подход к построению сплайн-вейвлетных разложений использует аппроксимационные соотношения в качестве исходной структуры для построения пространств минимальных сплайнов и калибровочные соотношения для доказательства вложенности соответствующих пространств. Преимуществами предлагаемого подхода, за счет отказа от формализма гильбертовых пространств, являются возможность применения неравномерных сеток и достаточно произвольных неполиномиальных сплайн-вeйвлетов.

DOI: 10.15372/SJNM20210306