Издательство СО РАН

Издательство СО РАН

Адрес Издательства СО РАН: Россия, 630090, а/я 187
Новосибирск, Морской пр., 2

soran2.gif

Baner_Nauka_Sibiri.jpg


Яндекс.Метрика

Поиск по журналу

Сибирский журнал вычислительной математики

2022 год, номер 3

О преимуществах нестандартных конечно-разностных дискретизаций для дифференциальных задач

Д. Конте, Н. Гуарино, Дж. Пагано, Б. Патерностер
"Университет Салерно, Фискиано, Италия
dajconte@unisa.it"
Ключевые слова: нестандартные конечно-разностные методы, положительные решения, точные схемы, обыкновенные дифференциальные уравнения, уравнения в частных производных
Страницы: 269-287

Аннотация

Цель данной работы показать преимущества использования нестандартных конечно/разностных (НСКР) численных схем для решения обыкновенных дифференциальных уравнений (ОДУ) и уравнений в частных производных (УЧП), некоторые свойства точного решения которых, например положительность, заранее известны. В качестве основного источника рассматривается работа Миккенса [14], автор которой выводит НСКР-схемы для ОДУ и УЧП, описывающие реальные явления и поэтому широко используемые в приложениях. Мы продемонстрируем, что НСКР-методы могут иметь более высокий порядок сходимости, чем соответствующие классические методы, а также сформулируем условия, гарантирующие устойчивость анализируемых схем. Кроме того, мы приводим углубленные численные тесты, сравнивая классические методы с НСКР-методами, предложенными Миккенсом, и определяя, когда последние имеют явное преимущество.

DOI: 10.15372/SJNM20220304