Издательство СО РАН

Издательство СО РАН

Адрес Издательства СО РАН: Россия, 630090, а/я 187
Новосибирск, Морской пр., 2

soran2.gif

Baner_Nauka_Sibiri.jpg


Яндекс.Метрика

Поиск по журналу

Сибирский журнал вычислительной математики

2024 год, номер 1

Разностная схема для волнового уравнения

А.Ф. Мастрюков
Институт вычислительной математики и математической геофизики Сибирского отделения Российской академии наук, Новосибирск, Россия
maf@omzg.sscc.ru
Ключевые слова: дифференциально-разностные уравнения, конечно-разностный метод, оптимальный, точность, метод Лагерра
Страницы: 71-82

Аннотация

В работе рассматривается численное решение волнового уравнения. В алгоритме решения используются оптимальные параметры, значения которых получаются с применением преобразования Лагерра по времени к волновому уравнению. В разностную схему уравнения 2-го порядка аппроксимации вводятся дополнительные параметры. Оптимальные значения этих параметров получаются минимизацией погрешности разностной аппроксимации уравнения Гельмгольца. После проведения обратного преобразования Лагерра в уравнении для гармоник получается дифференциально-разностное волновое уравнение с оптимальными параметрами. Оно разностное по пространственным переменным и дифференциальное по времени. Предлагается итерационный алгоритм решения дифференциально-разностного волнового уравнения с оптимальными параметрами. Рассмотрены 1- и 2-мерные случаи уравнений. Приводятся результаты численных расчетов дифференциально-разностных уравнений. Показано, что использование разностных схем с оптимальными параметрами ведет к повышению точности решения уравнений.

DOI: 10.15372/SJNM20240106
EDN: CWINFC
Добавить в корзину
Товар добавлен в корзину