Издательство СО РАН

Издательство СО РАН

Адрес Издательства СО РАН: Россия, 630090, а/я 187
Новосибирск, Морской пр., 2

soran2.gif

Baner_Nauka_Sibiri.jpg


Яндекс.Метрика

Поиск по журналу

Сибирский журнал вычислительной математики

2025 год, номер 2

Алгебро-геометрические многосеточные методы декомпозиции областей

В.П. Ильин1,2
1Институт вычислительной математики и математической геофизики Сибирского отделения Российской академии наук, Новосибирск, Россия
ilin@sscc.ru
2Новосибирский государственный технический университет, Новосибирск, Россия
Ключевые слова: предобусловленные крыловские методы, многомерные задачи, декомпозиция областей, многосеточные подходы, неполная факторизация, диагональная компенсация, распараллеливание алгоритмов
Страницы: 171-183

Аннотация

Рассматриваются итерационные процессы в подпространствах Крылова для решения систем линейных алгебраических уравнений (СЛАУ) с разреженными матрицами высокого порядка, возникающих при сеточных аппроксимациях многомерных краевых задач. Предобуславливание СЛАУ осуществляется на основе единообразного комбинированного подхода, включающего декомпозицию областей и рекурсивное применение двухсеточного алгоритма, которые реализуются путём формирования блочно-трёхдиагональных алгебраических и сеточных структур, обращаемых с помощью неполной факторизации и диагональной компенсации. Для стилтьесовых систем исследуются вопросы устойчивости и скорости сходимости итераций. Обсуждаются вопросы распараллеливания и обобщения предложенных методов на широкие классы актуальных практических задач.

DOI: 10.15372/SJNM20250204
EDN: SITBDT
Добавить в корзину
Товар добавлен в корзину