Издательство СО РАН

Издательство СО РАН

Адрес Издательства СО РАН: Россия, 630090, а/я 187
Новосибирск, Морской пр., 2

soran2.gif

Baner_Nauka_Sibiri.jpg


Яндекс.Метрика

Поиск по журналу

Сибирский журнал вычислительной математики

2014 год, номер 4

Для каких обратных задач априорная оценка точности приближенного решения может иметь порядок ошибки данных

А.С. Леонов
Национальный исследовательский ядерный университет (МИФИ), Каширское шоссе, 31, Москва, 115409
asleonov@mephi.ru; ilposed@sumail.ru
Ключевые слова: линейные обратные задачи, априорная и апостериорная оценка точности, корректность по Тихонову
Страницы: 339-348

Аннотация

Доказывается, что глобальная априорная оценка точности приближенных решений линейного операторного уравнения первого рода с возмущенными данными может иметь тот же порядок точности, что и у приближенных данных задачи, только для корректных по Тихонову задач. Предлагается метод оценки качества множества корректности, выбранного для решения обратной задачи, по сравнению с другими множествами. Использование «обобщенного метода невязки на множестве корректности» позволяет устойчиво решить обратную задачу и получить апостериорную оценку точности приближенного решения сравнимую по порядку с точностью данных задачи. Методика иллюстрируется вычислительным примером.