Издательство СО РАН

Издательство СО РАН

Адрес Издательства СО РАН: Россия, 630090, а/я 187
Новосибирск, Морской пр., 2

soran2.gif

Baner_Nauka_Sibiri.jpg


Яндекс.Метрика

Поиск по журналу

Сибирский журнал вычислительной математики

2025 год, номер 4

Решение методом конечных элементов краевой задачи для эллиптического уравнения с дельта-функцией Дирака в правой части

Д.Н. Романов1, М.В. Урев1,2
1Новосибирский национальный исследовательский государственный университет (НГУ), Новосибирск, Россия
dnklnsu@gmail.com
2Институт вычислительной математики и математической геофизики Сибирского отделения Российской академии наук, Новосибирск, Россия
mih.urev2010@yandex.ru
Ключевые слова: двумерное уравнение Пуассона, сингулярная правая часть, расширенная обобщенная постановка, дробные пространства Соболева, метод конечных элементов, оценка уклонения
Страницы: 377-389

Аннотация

В данной работе на примере уравнения Пуассона рассматриваются вопросы численного решения методом конечных элементов однородной краевой задачи Дирихле для эллиптического уравнения в двумерной многоугольной выпуклой области Ω с сингулярной правой частью в виде дельта-функции Дирака. Доказана теорема существования и единственности обобщенного решения в дробном гильбертовом пространстве Соболева Hs(Ω), где 1/2 < s < 1. Предложен и изучен подход к дискретному анализу задачи методом конечных элементов. Приведены результаты численных экспериментов по решению методической задачи с помощью пакета FreeFem++, подтверждающие полученную оценку уклонения дискретного решения от точного.

DOI: 10.15372/SJNM20250403
Добавить в корзину
Товар добавлен в корзину