В статье предлагается метод определения стехиометрического коэффициента по элементарному составу топлива и окислителя вместо используемого в практике теплотехнических расчетов стехиометрического коэффициента α.
В работе исследуется возможность применения тепловой теории воспламенения, предполагающей, что основные процессы, приводящие к зажиганию, имеют место в конденсированной фазе. Переменный тепловой поток к образцу создается за счет теплоотдачи от продуктов горения воспламенителя. В качестве последних используется пироксилин и смесь перхлората аммония с полиэтиленом. Определяемыми параметрами являются давление и температура газа в двух точках камеры и температура поверхности воспламеняемого образца. Экспериментально наблюдаемые задержки зажигания находятся по срыву кривой температуры поверхности. Для точного определения теплового потока к образцу исследуется известный метод «инертного тела», температура поверхности которого записывается тонкими термопарами. Временная зависимость этой температуры аппроксимируется степенным рядом с последующим пересчетом на тепловой поток. В качестве объектов исследования выбраны вещества с известными кинетическими параметрами: пироксилин и поливинилнитрат. По полученному значению q(t) и известным кинетическим параметрам, используя критерий воспламенения, предполагающий, что зажигание имеет место в момент, когда тепловыделение в веществе за счет химической реакции равно потоку извне, определяется время зажигания. Кроме того, время зажигания определяется из решения на ЭВЦМ точной задачи распределения температуры в образце с учетом тепловыделения за счет химической реакции в веществе и граничным условием на поверхности q = q(t). Эти расчетные времена задержек зажигания сравниваются с экспериментально наблюдаемым. Показано, что для всего диапазона полученных задержек зажигания от 0,04 до 1,5 сек эти величины совпадают с точностью до 10%.
При горении небронированных образчиков перхлората аммония в области давлений 160—500 ат наблюдаются некоторые аномалии: скорость горения сначала падает с ростом давления до 250 ат, далее она от него не зависит, а само горение имеет пульсирующий характер. Падение скорости горения с ростом давления наблюдалось также в интервале 500—850 ат при горении аммиачной селитры, катализированной окисью хрома. Рассмотрение возможных путей замедления химических реакций при горении этих солей показало, что одним из них может быть замедление горения образующейся водой. В работе изучено влияние добавок окиси кремния, силиконовой жидкости, стеарата кальция и др. на горение перхлората аммония и его смесей, а также на горение нитрата аммония с окисью хрома с целью выяснения причин указанных выше аномалий. Показано, что в определенном диапазоне давлений добавление окиси кремния устраняет наблюдающиеся аномалии (падение скорости горения с давлением и пульсирующий характер его), в то время как добавление стеарата кальция усугубляет их. Отмечено, что одна и та же добавка в зависимости от интервала давлений и условий, в которых горение протекает, может играть роль инертной, катализатора или ингибитора горения, что связано, по-видимому, с изменением ведущих реакций в различных интервалах давления.
Представлены дополнительные данные о параметрах детонации монотопливных компонентов, обладающих положительным энерговыделением при разложении. Такие вещества, будучи добавлены в горючую смесь, могут обеспечить развитие неустойчивостей непосредственно на головном фронте детонационной волны. При этом энерговыделение смеси становится двухстадийным. Как основная, так и бифуркационная структуры возникают скачкообразно (спонтанно), что слабо согласуется с гипотезой о постепенном усилении слабых возмущений, принятой при численном моделировании ячеистых структур.
Напряженно-деформированное состояние (НДС) вокруг выработок определяется по значениям напряжений на “бесконечности”, т.е. требуется знание распределения напряжений в нетронутом массиве пород. Для выработки с произвольной геометрией сечения контура предлагается другой способ определения НДС, основанный на непосредственном измерении перемещений ее контура. Способ предполагает применение формул Колосова-Мусхелишвили. Рассмотрены выработки, имеющие формы кругового и эллиптического цилиндров.
С.В. ПАЦАЕВА, Т.А. ДОЛЕНКО, С.А. БУРИКОВ, В.И. ЮЖАКОВ
Московский государственный университет им. М.В. Ломоносова, 119991, г. Москва, ГСП-1, Ленинские горы, д. 1, стр. 2 spatsaeva@mail.ru
Ключевые слова: комбинационное рассеяние света, СН- и ОН-группы, водные растворы, органические растворители, определение концентрации
Страницы: 284-290
Методом спектроскопии комбинационного рассеяния света исследованы бинарные смеси метилового, этилового, изоамилового спиртов и уксусной кислоты с водой в различных соотношениях. При изменении концентрации органического растворителя в растворе от воды до чистого растворителя наблюдаются изменения интенсивностей полос валентных колебаний СН- и ОН-групп в диапазоне 2600-3800 см-1. Для количественной характеристики парциальной концентрации органического компонента выбрана интегральная интенсивность ICH валентных колебаний СН-групп, нормированная на суммарную интенсивность полос СН- и ОН-колебаний ( ICH + IOH) в диапазоне 2600-3800 см-1. При такой нормировке для спектров всех смесей интенсивность ICH/( ICH + IOH) линейно зависит от объемной доли органического растворителя во всем исследованном диапазоне его концентраций. Это дает возможность бесконтактным способом определять содержание органических растворителей, в том числе горючих и токсичных, в их смеси с водой. Относительная погрешность определения объемной доли этанола, метанола и уксусной кислоты в воде составила 0,5; 1,1 и 1,5% соответственно.
По результатам многолетних измерений в Подмосковье проанализирована связь параметров приземного аэрозоля с направлением прихода воздушных масс. Использованы результаты 2004, 2006, 2007, 2010 и 2011 гг. Данные получены с помощью спектрополяриметра, трехсуточные обратные траектории рассчитывались с помощью стандартной программы NOAA HYSPLIT. Все возможные направления прихода воздушных масс были разбиты на 8 секторов, и принадлежность траектории к данному сектору определялась начальной ее точкой и ее характером. Соответствующие характеристики аэрозоля - массовая концентрация М и параметр Хенела χ - осреднялись по сектору. В распределении траекторий по секторам присутствует ярко выраженный максимум на секторе Балтика-Cеверная Атлантика, массовая концентрация имеет максимум на секторе Украина-Средиземноморье, усредненные величины параметра Хенела не зависят от направления прихода воздушных масс. Осредненное временное распределение траекторий отчетливо показывает наличие для секторов Балтика-Атлантика и Российская Западная Арктика - Полярный Урал периодических максимумов с периодом около 11-12 нед. В остальных секторах распределение реализаций их по времени относительно равномерно.
Т.В. Королева1, О.В. Черницова1, А.В. Шарапова1, П.П. Кречетов1, А.В. Пузанов2, И.В. Горбачев2 1Московский государственный университет им. М. В. Ломоносова, 119234, Москва, Ленинские горы, 1 korolevat@mail.ru 2Институт водных и экологических проблем СО РАН, 656038, Барнаул, ул. Молодежная, 1
Ключевые слова: экологическая безопасность, ракетно-космическая деятельность, ракетное топливо
Страницы: 183-191
Для корректной оценки данных, получаемых в ходе экологического мониторинга ракетно-космической деятельности, необходимо учитывать природную вариабельность химических свойств почв, распространенных на территориях, используемых для приземления отделяющихся частей ракет-носителей. В статье представлены результаты почвенно-геохимических исследований в горно-тундровых ландшафтах Республики Алтай в районе падения вторых ступеней ракет. На основе полученных результатов и данных лабораторных экспериментальных исследований выполнена количественная оценка экологической буферной емкости почв одной из мониторинговых площадок по отношению к ракетному топливу.
Наш сайт использует куки. Продолжая им пользоваться, вы соглашаетесь на обработку персональных данных в соответствии с политикой конфиденциальности. Подробнее