В статье рассматривается новый класс нелинейных интегро-дифференциальных уравнений Вольтерра второго рода с ядром типа свертки. Используя теорему Шаудера о неподвижной точке, мы получаем некоторые условия, достаточные для существования и единственности решений. Кроме того, для получения приближенного решения предлагаемого уравнения Вольтерра используется метод Нистрема. Приведены численные примеры для подтверждения полученных результатов.
Дробные операторы переменного порядка могут использоваться в различных физических и биологических приложениях, где скорость изменения представляющей интерес величины может зависеть от пространства и/или времени. В данной статье мы предлагаем явную конечно-разностную аппроксимацию для пространственно-временного дробного волнового уравнения Рисса-Капуто переменного порядка с начальными и граничными условиями в конечной области. Предлагаемая схема является условно устойчивой и имеет глобальную ошибку усечения O(τ2+h2). Также представлен численный эксперимент для проверки эффективности предлагаемой схемы.
В работе исследуется технология расчета разностных задач с внутренними граничными условиями баланса потоков, построенными с помощью односторонних многоточечных разностных аналогов первых производных произвольного порядка точности. Предлагаемая технология одинаково подходит для любых типов решаемых дифференциальных уравнений и допускает однотипную реализацию при любых порядках точности. Она, в отличие от аппроксимаций, опирающихся на продолженную систему уравнений, не приводит к осложнениям при расщеплении многомерных задач на одномерные. Сформулированы достаточные условия разрешимости и устойчивости реализации алгоритмов методом прогонки для граничных условий произвольного порядка точности. Доказательство основано на приведении многоточечных граничных условий к виду, не нарушающему трехдиагональную структуру матриц, и установлении условий диагонального преобладания в преобразованных строках матрицы, соответствующих внешним и внутренним граничным условиям.
"С.Н. Скляр1, О.Б. Забинякова1,2"
"1Американский университет в Центральной Азии, Бишкек, Киргизия sklyar51@gmail.com; sklyar_s@auca.kg 2Федеральное государственное бюджетное учреждение науки Научная станция Российской академии наук, Бишкек, Киргизия perah.92@inbox.ru; zabinyakova_o@auca.kg"
Ключевые слова: магнитотеллурическое зондирование, прямая одномерная задача, градиентная среда, модель Като-Кикучи, численное решение, адаптивная вычислительная сетка
Страницы: 349-364
В работе рассматривается имплементация алгоритма построения адаптивной вычислительной сетки в численное решение прямой одномерной задачи магнитотеллурического зондирования (задачи Тихонова-Каньяра) методом локальных интегральных уравнений, предложенным авторами ранее. Конструирование адаптивной вычислительной сетки основано на геометрических принципах, рассматривающих оптимизацию кусочно-постоянного интерполянта аппроксимируемой функции электрической проводимости среды. Проведены численные эксперименты для исследования и иллюстрации эффективности комбинированного метода. Апробация осуществлялась на модели Като -Кикучи с известным точным решением.
"Е.А. Берендеев1,2, И.В. Тимофеев1,2"
"1Новосибирский национальный исследовательский государственный университет (НГУ), Новосибирск, Россия beren@inp.nsk.su 2Институт ядерной физики им. Г.И. Будкера СО РАН, Новосибирск, Россия"
Ключевые слова: параллельный алгоритм, метод частиц в ячейках, решение систем линейных алгебраических уравнений, высокопроизводительные вычисления
Страницы: 365-378
Статья посвящена вопросам построения параллельного алгоритма для расчёта динамики плазмы методом частиц в ячейках с использованием полунеявной схемы, сохраняющей энергию и заряд. Данная схема представляет собой двухстадийный предиктор-корректор, где на этапе предсказания используется полунеявный метод Лапенты, в котором сохраняющий энергию линейный ток не удовлетворяет локальному закону Гаусса, а на этапе коррекции токи, электромагнитные поля и скорости частиц подправляются так, чтобы разностные законы сохранения энергии и заряда выполнялись точно. Этот подход оказывается эффективным для моделирования разномасштабных явлений с достаточно большим временным шагом, однако является ресурсоёмким, поскольку требует не только решения двух систем линейных уравнений за шаг, но и перестроения всей матрицы системы. Авторами разработан матрично-операторный алгоритм для программной реализации этой схемы, позволяющий эффективно распараллелить вычисления, а также использовать различные библиотеки для работы с матрицами и решателями систем линейных уравнений. Для построения матрицы использован алгоритм построчного хранения с поиском элементов через хэш-таблицу, что уменьшает объём используемой памяти, число синхронизаций потоков и позволяет существенно ускорить вычисления. Рассматриваемый алгоритм успешно применён в коде Beren3D.
Ц. Ду, Т. Хоу
School of Mathematics and Statistics, Beihua University, Цзилинь, Китай dzrdmailbox@foxmail.com
Ключевые слова: уравнение Аллена-Кана, коэффициент мобильности, принцип максимума, энергетическая устойчивость, оценка ошибки
Страницы: 379-391
В данной работе предлагается линейная конечно-разностная схема второго порядка для уравнения Аллена-Кана с общей положительной мобильностью. Для временной дискретизации используется схема Кранка-Николсона (КН) и формула Тейлора, а для пространственной аппроксимации - метод центральных конечных разностей. Обсуждаются дискретный принцип максимума (ПМ), дискретная энергетическая устойчивость и оценка ошибки в L∞-норме. Представлены некоторые численные примеры для проверки теоретических результатов.
Джеутса А. Кинфак1, Х. Донфак2, Ф.Е. Сапнкен3,4, Дж.Г. Тамба3,4
Ключевые слова: конечная разность, задачи диффузии, однородные пористые среды
Страницы: 393-406
Мы представляем анализ сходимости метода конечных разностей для решения на четырехугольных сетках задач двумерных течений в однородных пористых средах с полным тензором проницаемости. Мы начинаем с вывода дискретной задачи, используя нашу конечно-разностную формулу для смешанной производной второго порядка. Результат существования и единственности решения этой задачи получается благодаря положительной определенности соответствующей матрицы. Исследуются их теоретические свойства, а именно, устойчивость (с соответствующей дискретной энергетической нормой) и оценки ошибки (с L2-нормой, относительной L2-нормой и L∞-нормой). Представлены численные расчеты.
Представлены результаты применения численного метода для решения одномерных гиперболических уравнений. Эти уравнения моделируют динамику жидкости в трубе с меняющимся поперечным сечением. Уравнения записаны в терминах напора и расхода. Для численного моделирования используются радиальные базисные функции и оптимизация методом наименьших квадратов. Этот численный метод предназначен для работы с произвольным распределением узлов в области задачи. Основы применения численного метода были изложены в нашей предыдущей работе. В данной работе мы скорректировали применявшиеся ранее методы, отказались от использования временно-маршевого подхода и использовали метод адаптивного уточнения. Описаны три случая моделирования системы резервуар-труба-клапан, показывающие, что модель воспроизводит четкий градиент времени.
"Г.В. Решетова1, Е.И. Роменский2"
"1Институт вычислительной математики и математической геофизики Сибирского отделения Российской академии наук, Новосибирск, Россия kgv@nmsf.sscc.ru 2Институт математики им. С.Л. Соболева Сибирского отделения Российской академии наук, Новосибирск, Россия evrom@math.nsc.ru"
Ключевые слова: моделирование волновых полей, пористая среда, насыщенная жидкостью, таяние вечной мерзлоты, газовые гидраты, конечно-разностные схемы на сдвинутых сетках, сейсмическое затухание
Страницы: 425-441
В работе представлена симметрическая гиперболическая термодинамически согласованная модель насыщенной пористой среды для случая конечных деформаций и ее линеаризация для описания сейсмических волновых полей малой амплитуды в пористых средах, насыщенных жидкостью. Модель позволяет описывать волновые процессы для разных фазовых состояний насыщающей жидкости при ее переходе из твердого состояния в жидкое, например при оттаивании вечной мерзлоты и разложении газогидратов под действием температуры. Для численного решения данной модели разработан метод конечных разностей на сдвинутых сетках. С его помощью проведены тестовые расчеты для модели среды, содержащей слой газогидрата внутри однородной упругой среды. Исследование показало, что характеристики волновых полей в насыщенных пористых средах значительно зависят от пористости, которая меняется при изменении температуры.
В данной работе выполняется анализ высокой точности метода приведенного элемента Адини-Стокса, разработанного в [7], для модели Бринкмана. Мы показываем, что этот метод равномерно сходится с точностью порядка O(h 2) для скорости в норме, зависящей от сетки и параметров, на общих квазиоднородных прямоугольных сетках. Также предлагается соответствующий метод постобработки для повышения точности для давления. Численные примеры подтверждают нашу теорию.
Наш сайт использует куки. Продолжая им пользоваться, вы соглашаетесь на обработку персональных данных в соответствии с политикой конфиденциальности. Подробнее