Изучены закономерности горения различных систем, состоящих из активного связующего, способного к самостоятельному горению, и октогена. Установлено, что в зависимости от дисперсности октогена и соотношения скоростей горения связующего и октогена топливо может гореть либо как единая система, либо по эстафетной модели, либо по прослойкам связующего. Поэтому скорость горения системы при введении октогена может уменьшаться, увеличиваться и оставаться неизменной.
На базе экспериментальных данных, полученных разными методами в условиях высокотемпературного нагрева, показано, что вероятность загорания и взрыва взрывчатых веществ зависит от глубины их разложения. В качестве критерия безопасности нагрева принята температура перехода от медленного химического разложения к стадии автокатализа. Глубина разложения, соответствующая этой температуре, является базовой точкой для определения границы безопасности для каждого конкретного взрывчатого вещества на основе известных для него кинетических параметров.
Разработана модель горения пористых деформируемых сред в случае учета конечных деформаций твердой фазы. Предложен эффективный численно-аналитический метод решения задачи горения для деформируемой пористой среды с системой периодически расположенных трещин. С помощью этого метода проведен численный анализ влияния модуля упругости твердой фазы на характеристики внутреннего тепло- и массопереноса.
Предложена математическая модель автоволнового распространения твердофазной реакции низкотемпературного хлорирования хлористого бутила. Модель имеет связный характер и включает нелинейные уравнения теплопроводности, химической кинетики и уравнение баланса для поврежденности среды с соответствующими граничными условиями. Численным методом найдены собственные числа и собственные функции задачи. Решена обратная задача, определены возможные величины тепловых эффектов химических реакций и разрушения. Результаты расчетов качественно согласуются с экспериментальными данными.
На основе двухскоростной двухтемпературной модели детонации аэровзвеси частиц алюминия в кислороде изучена задача взаимодействия плоской детонационной волны с примыкающей неравновесной волной разрежения, сформированной при мгновенном снятии поддерживающего поршня. Подтверждено, что режимы Чепмена–Жуге и недосжатые режимы со сверхзвуковым по замороженной скорости звука конечным состоянием являются самоподдерживающимися. Для недосжатых режимов с дозвуковым по замороженной и сверхзвуковым по равновесной скорости звука конечным состоянием (неустойчивых в односкоростном приближении) показано устойчивое распространение структуры. Результатом взаимодействия пересжатой волны с волной разрежения при значениях параметров релаксации, попадающих в область существования режимов Чепмена–Жуге, является выход на режим Чепмена–Жуге. Вне указанной области реализуется самоподдерживающийся режим недосжатой детонации, соответствующий данным параметрам релаксации.
Приведены результаты численного исследования процесса ударного инициирования гетерогенной детонации в канале прямоугольной формы, частично или полностью заполненном неоднородной монодисперсной газовзвесью унитарного топлива. Изучено влияние параметров инициирующей ударной волны, дисперсной смеси и закона пространственно-неоднородного распределения концентрации частиц в двухфазной среде на детонационную способность слоя газовзвеси унитарного топлива. Показано, что при прочих одинаковых условиях увеличение степени неоднородности пространственного распределения концентрации дисперсной фазы приводит к снижению детонационной способности слоя частиц.
Приведены результаты экспериментальных измерений зависимости скорости детонации от диаметра заряда для гомогенных нитрометана и пропиленгликольдинитрата; идеальной скорости детонации для аллилнитрата, диэтиленгликольдинитрата, метиленгликольдинитрата и этилнитрата. Собраны литературные данные по измерению зависимости скорости детонации от диаметра заряда для жидкого тротила, нитроглицерина, нитрогликоля и метилнитрата. Показано, что измеренные значения идеальной скорости детонации с хорошей точностью соответствуют расчетным, полученным по методу SD, использующему уравнение состояния вещества при высоком давлении (см. статью Б. Н. Кондрикова, А. И. Сумина в журнале «Физика горения и взрыва» в № 1 за 1987 г.). Получена корреляция между отношением критической скорости детонации к идеальной и теплотой взрыва, что позволяет оценить предельное значение последней, при котором гомогенные жидкие нитросоединения теряют способность к детонации.
Приведены результаты определения тротилового эквивалента двух эмульсионных промышленных взрывчатых веществ типа обратных эмульсий (порэмит 1 и порэмит М) посредством измерения основных параметров воздушной ударной волны – максимального избыточного давления и удельного импульса фазы сжатия на расстояниях 2, 3, 5, 7 и 9 м от центра цилиндрического заряда взрывчатого вещества массой 10 кг. Дополнительно определена длительность фазы сжатия воздушной ударной волны. Установлено, что тротиловый эквивалент, определенный по данным измерения максимального давления для обоих порэмитов при плотности заряда 1,25÷1,37 г/см3, примерно одинаков (&8776;0,9), а определенный по величине удельного импульса – существенно различается: 0,7 и 1,1, соответственно. Этот результат объясняется выделением энергии за счет относительно медленной реакции частиц алюминия с кислородом воздуха за фронтом волны.
М. П. Бондарь, О. Л. Первухина, В. Ф. Нестеренко, Я. Л. Лукьянов
Институт гидродинамики им. М. А. Лаврентьева СО РАН, 630090 Новосибирск
Страницы: 122-129
Исследована зависимость структуры титана от величины полной деформации при взрывном коллапсе толстостенных цилиндров. Показано, что развитие структуры в целом и критические параметры появления неустойчивости пластического течения в титане не зависят от конечной деформации цилиндров. Эта неустойчивость, обусловленная внутренней структурой материала, является основным механизмом нарушения осевой симметрии коллапса в данной геометрии в заданных условиях нагружения. Обнаружено, что неустойчивость пластического течения в титане проявляется в образовании полос адиабатического сдвига.
Дано сравнение разрушающей способности зарядов контактного действия различной конструкции нескольких взрывчатых веществ. Показано, что эффективность контактного взрыва возрастает с увеличением плотности и скорости детонации взрывчатых веществ, плотности прилегания заряда к разрушаемой поверхности и зависит от акустических свойств разрушаемой среды.
Наш сайт использует куки. Продолжая им пользоваться, вы соглашаетесь на обработку персональных данных в соответствии с политикой конфиденциальности. Подробнее